MOLECULAR-BIOLOGICAL MARKERS IN THE DIAGNOSIS OF THE NEUROENDOCRINE TUMORS

DOI: https://doi.org/None

V.V. Delektorskaya N.N. Blokhin Russian Cancer Research Center, Kashirskoye shosse, 24, Moscow, Russian Federation, 115478

Neuroendocrine tumors (NETs) constitute a heterogeneous group of relatively rare neoplasms, incidence of which has increased in the last decades. These tumors are composed of cells with a neuroendocrine phenotype and may occur in any organ, but are most often observed in the gastroenteropancreatic system and the lung. NETs share specific morphologic, immunohistochemical, ultrastructural, and molecular characteristics. The presented paper is devoted to the analysis of up-to-date concepts of the nature of NETs and features of their biological behavior. Current issues of the recent classifications and morphological diagnosis based on histological and immunohistochemical criteria are discussed. The paper includes the latest data on the diagnostic markers and the grading of tumors. The latter is based on mitotic count and the proliferation activity as determined by Ki-67 index. The paper also highlights data on key molecular markers that affect on prognosis and response to therapy of the digestive and bronchopulmonary NETs.
Keywords: 
neuroendocrine tumor, molecular markers, diagnosis, immunohistochemistry, digestive system, respiratory tract

Список литературы: 
  1. Klöppel G. Tumour biology and histopathology of neuroendocrine tumours. Best Practice Res. Clin. Endocrin Metabol. 2007; 21 (1): 15–31.
  2. Öberg K.E. Gastrointestinal neuroendocrine tumors. Ann. Oncol. 2010; 21 (Suppl. 7): 72–80.
  3. Caplin M., Yao J.C. An overview of thoracic and gastrointestinal neuroendocrine tumours. In: Caplin M., Yao J.C. (eds.). Handbook of Gastroenteropancreatic and Thoracic Neuroendocrine Tumours. BioScientifica. 2011: 1–9.
  4. Klimstra D.S., Modlin I.R., Coppola D. et al. The Pathologic Classification of Neuroendocrine Tumors. A Review of Nomenclature, Grading, and Staging Systems. Pancreas. 2010; 39 (6): 707–12.
  5. Rindi G., Bordi C. Endocrine tumours of the gastrointestinal tract: etiology, molecular pathogenesis and genetics. Best. Pract. Res. Clin. Gastroenterol. 2005; 19 (4): 519–34.
  6. Cives M., Strosberg J. An update on gastroenteropancreatic neuroendocrine tumors. oncology (Williston Park). 2014; 28 (9): pii: 201359.
  7. Yao J.C., Hassan M., Phan A. et al. One hundred years after «carcinoid»: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. Review. J. Clin. Oncol. 2008; 26 (18): 3063–72.
  8. Oberndorfer S. Kazinoide tumoren des Dunndarms. Z Pathol. Frankf. 1907; 1: 426–32.
  9. Soga J. The term «carcinoid» is a misnomer: the evidence based on local invasion. J. Exp. Clin. Cancer Res. 2009; 28: 15.
  10. Öberg K. Carcinoid tumors: molecular genetics, tumor biology, and update of diagnosis and treatment. Curr. Opin. Oncol. 2002; 14: 38–45.
  11. Klöppel G. Classification and pathology of gastroenteropancreatic neuroendocrine neoplasms. Endocr. Relat. Cancer. 2011; 18: 1–16.
  12. Moran C.A., Suster S., Coppola D., Wick M.R. Neuroendocrine carcinomas of the lung: a critical analysis. Am. J. Clin. Pathol. 2009; 131 (2): 206–21.
  13. Bosman F.T., Carneiro F.T., Hrubon R.H. et al. (Eds) World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of the Digestive System. IARC Press: Lyon. France. 2010.
  14. Travis W.D, Brambilla E., Müller-Hermelink H.K., Har ris C.C. Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. World Health Organization Classification of Tumours. 2004. Vol. 10. IARC Press: Lyon, France.
  15. Rindi G., Wiedenmann B. Neuroendocrine neoplasms of the gut and pancreas: new insights. Nat. Rev. Endocrinol. 2011; 8 (1): 54–64.
  16. Reid M.D., Balci S., Saka B., Adsay N.V. Neuroendocrine tumors of the pancreas: current concepts and controversies. Endocr. Pathol. 2014; 25 (1): 65–79.
  17. Rekhtman N. Neuroendocrine Tumors of the Lung: An Update. Arch. Pathol. Lab. Med. 2010; 134 (11): 1628–38.
  18. Travis W.D. Advances in neuroendocrine lung tumors. Ann. Oncol. 2010; 21 (Suppl. 7): 65–71.
  19. Travis W.D. Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas. Mod. Pathol. 2012; 25 (Suppl. 1): 18–30.
  20. Scoazec J.Y., Couvelard A. Gastroenteropancreatic neuroendocrine tumors: what must the pathologist know and do in 2014? Ann. Pathol. 2014; 34 (1): 40–50.
  21. Shi C., Klimstra D.S. Pancreatic neuroendocrine tumors: pathologic and molecular characteristics. Semin. Diagn. Pathol. 2014; 30: piiS0740-2570.
  22. Klimstra D.S. Pathology reporting of neuroendocrine tumors: essential elements for accurate diagnosis, classification, and staging. Semin. Oncol. 2013; 40 (1): 23–36.
  23. DeLellis R.A., Shin S.J., Treaba O.D. Chapter 10: Immunohistology of Endocrine Tumors. In: Dabbs D.J. ed. Diagnostic Immunohistochemistry: Theranostic and Genomic Applications. 3rd Edition. Elsevier Inc. 2010; 291–329.
  24. Leteurtre E. Pathologic diagnostic for a primary of metastatic neuroendocrine tumor. Ann. Pathol. 2011; 31 (5 Suppl.): 79–80.
  25. Sagi A., Alexis D., Remotti F., Bhagat G. Usefulness of CDX2 and TTF-1 in differentiating gastrointestinal from pulmonary carcinoids. Am. J. Clin. Pathol. 2005; 123 (3): 394–404.
  26. Schmitt A.M., Riniker F., Anlauf M. Islet 1 (Isl1) expression is a reliable marker for pancreatic endocrine tumors and their metastases. Am. J. Surg. Pathol. 2008; 32 (3): 420-25.
  27. Srivastava A., Hornick J.L. Immunohistochemical staining for CDX-2, PDX-1, NESP-55, and TTF-1 can help distinguish gastrointestinal carcinoid tumors from pancreatic endocrine and pulmonary carcinoid tumors. Am. J. Surg. Pathol. 2009; 33 (4): 626–32.
  28. Couvelard A. Ki67 and neuroendocrine tumors. Ann. Pathol. 2011; 31 (5 Suppl.): 55–6.
  29. Klöppel G., Rindi G., Perren A. et al. The ENETS and AJCC/UICC TNM classifications of the neuroendocrine tumors of the gastrointestinal tract and the pancreas: a statement. Virchows Arch. 2010; 456 (6): 595–7.
  30. Yang M., Tian B.L., Zhang Y. et al. Evaluation of the World Health Organization 2010 grading system in surgical outcome and prognosis of pancreatic neuroendocrine tumors. Pancreas. 2014; 43 (7): 1003–8.
  31. Rindi G., Klersy C., Inzani F. et al. Grading the neuroendocrine tumors of the lung: an evidence-based proposal. Endocrine-Related Cancer. 2014; 21 (1): 1–16.
  32. Jamali M., Chetty R. Predicting prognosis in gastroentero-pancreatic neuroendocrine tumors: an overview and the value of Ki-67 immunostaining. Endocr. Pathol. 2008; 19 (4): 282–88.
  33. Boussaha T., Rougier P., Taieb J., Lepere C. Digestive neuroendocrine tumors (DNET): the era of targeted therapies. Clin. Res. Hepatol. Gastroenterol. 2013; 37 (2): 134–41.
  34. Oberg K.E., Reubi J.C., Kwekkeboom D.J., Krenning E.P. Role of somatostatins in gastroentropancreatic neuroendocrine tumor development and therapy. Gastroenterol. 2010; 139 (3): 742–53.
  35. Sidéris L., Dubé P., Rinke A. Antitumor effects of somatostatin analogs in neuroendocrine tumors. Oncologist. 2012; 17 (6): 747–55.
  36. Strosberg J., Kvols L. Antiproliferative effect of somatostatin analogs in gastroenteropancreatic neuroendocrine tumors. World Gastroenterol. 2010; 16 (24): 2963–70.
  37. Körner M., Waser B., Schonbrunn A. et al. Somatostatin receptor subtype 2a immunohistochemistry using a new monoclonal antibody selects tumors suitable for in vivo somatostatin receptor targeting. Am. J. Surg. Pathol. 2012; 36 (2): 242–52.
  38. Wolin E.M. PI3K/Akt/mTOR pathway inhibitors in the therapy of pancreatic neuroendocrine tumors. Cancer Lett. 2013; 335 (1): 1–8.
  39. Cingarlini S., Bonomi M., Corbo V. Profiling mTOR pathway in neuroendocrine tumors. Target Oncol. 2012; 7 (3): 183–8.
  40. Qian Z.R., Ter-Minassian M., Chan J.A. et al. Prognostic significance of MTOR pathway component expression in neuroendocrine tumors. J. Clin. Oncol. 2013; 31 (27): 3418–25.
  41. Kulke M.H., Hornick J.L., Frauenhoffer C. et al. O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clin. Cancer Res. 2009; 15 (1): 338–45.
  42. Schmitt A.M., Pavel M., Rudolph T. et al. Prognostic and predictive roles of MGMT protein expression and promoter methylation in sporadic pancreatic neuroendocrine neoplasms. Neuroendocrinology. 2014; 100 (1): 35–44.
  43. Abdel-Rahman O. Vascular endothelial growth factor (VEGF) pathway and neuroendocrine neoplasms (NENs): prognostic and therapeutic considerations. Tumour Biol. 2014; 35 (11): 10615–25.
  44. Scoazec J.Y. Angiogenesis in neuroendocrine tumors: therapeutic applications. Neuroendocrinology. 2013; 97 (1): 45–56.
  45. Gilbert J.A., Adhikari L.J., Lloyd R.V. et al. Molecular markers for novel therapeutic strategies in pancreatic endocrine tumors. Pancreas. 2013; 42 (3): 411–21.