THE STUDY OF THE EFFECT OF INTERACTION BETWEEN GENES, ASSOCIATED WITH PHENOMENON OF DRUG RESISTANCE IN MYCOBACTERIUM TUBERCULOSIS COMPLEX

DOI: https://doi.org/None

R.I. Ludannyy (1), M.V. AlvarezFigueroa (1), A.V. Prokopenko (1), A.V. Valdokhina (1), G.A. Shipulin (1) Central Research Institute for Epidemiology of Federal Service on Consumers’ Rights Protection and Human Well-Being Surveillance, Novogireevskaya, 3A, Moscow, 111123, Russian Federation

Introduction. The phenomenon of drug resistance of Mycobacterium tuberculosis complex is extremely complicated. The determination of the genetic changes is not always able to explain reasons of this effect clearly. The aim of the study. Molecular genetic analysis of 108 clinical isolates of Mycobacterium tuberculosis complex was performed to understand possible genetic interactions. Results. The genetic replacements were found in genes associated with appearance of resistance to anti-TB drugs: pncA, inhA, katG, oxyR, ahpC, embB, rrs, rpsL, gidB, tlyA, and regulatory region of the eis gene. The level of variability was estimated to be from 0 to 73%. Molecular genetic characteristic of specimen’s collection with previously characterized phenotypes was obtained. Conclusion. The bioinformatic analysis of mutations’ combinations allows us to suggest the effect of complementary gene interaction closely related to biogenesis of the cell wall that may reflect the change in transmembrane transport, and finally might predetermine the transition to multidrug-resistant status.
Keywords: 
resistance, genomics, molecular genetics, complementary gene interaction, Mycobacterium tuberculosis complex

Список литературы: 
  1. Global tuberculosis report 2013. WHO. 2013; 1–306.
  2. Johnston J.C., Shahidi N.C., Sadatsafavi M., Fitzgerald J.M. Treatment outcomes of multidrug-resistant tuberculosis: a systematic review and meta-analysis. PLoS One. 2009; 4 (9): 1–9.
  3. Wright A., Zignol M., Van Deun A., Falzon D., Gerdes S.R., et al. Epidemiology of antituberculosis drug resistance 2002-2007: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. Lancet. 2006; 373 (9678):1861–73.
  4. Ramaswamy S., Musser J.M. Molecular genetic basis of antimicrobial agent resistance in mycobacterium tuberculosis. Tuber. Lung Dis. 1998; 79: 3–29.
  5. Scorpio A., Zhang Y. Mutations in pncA, a gene encoding pyraz-inamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med. 1996; 2: 662–7.
  6. Zhang Y., Heym B., Allen B., Young D., Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature. 1992; 358: 591–3.
  7. Sreevatsan S., Stockbauer K.E., Pan X., Kreiswirth B.N., Moghazeh S.L., Jacobs Jr. W.R., Telenti A., Musser J.M. Ethambutol resistance in Mycobacterium tuberculosis: critical role of embB mutations. Antimicrob. Agents Chem. 1997; 41 (8): 1677–81.
  8. Sreevatsan S., Pan X., Stockbauer K.E., Williams D.L., Kreiswirth B.N., Musser J.M. Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob. Agents Chem. 1996; 40 (4): 1024–6.
  9. Borrell S., Gagneux S. Strain diversity, epistasis and the evolution of drug resistance in Mycobacterium tuberculosis. Clinical Microbiol. Infect. 2011; 17 (6): 815–20.
  10. Baker L., Brown T., Maiden M. C., Drobniewski F. Silent nucleotide polymorphisms and a phylogeny for Mycobacterium tuberculosis. Emerg. Infect. Disease 2004; 10 (9): 1568–77.
  11. Zhang H., Li D., Zhao L., Fleming J., Lin N., Wang T., Liu Z., Li C., Galwey N., Deng J., Ying Z. et al. Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug. Nature genetics. 2013; 45: 1255–60.
  12. Böttger E. C. The ins and outs of Mycobacterium tuberculosis drug susceptibility testing. Clinical Microbiol. Infect. 2011; 17 (8): 1128–34.
  13. Gagneux S., Long C.D., Small P.M., Van T., Schoolnik G.K., Bohannan B.J. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science. 2006; 312 (5782): 1944–6.
  14. Farhat M.R., Shapiro B. J., Kieser K. J., Sultana R., Jacobson K.R., Victor T. C., Warren R. M., Streicher E. M., Calver A., Sloutsky A., Kaur D. Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nature genetics. 2013; 45 (10): 1183–9.
  15. Canetti G., Fox W., Khomenko A., Mahler H. T., Menon N.K., Mitchison D. A., Rist N., and Smelev N. A. Advances in techniques of testing mycobacterial drug sensitivity and the use of sensitivity tests in tuberculosis control programmes. Bull. Wld. Hlth. Org. 1969; 41: 21–43.
  16. Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Shane Sturrock S., et. al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012; 28 (12): 1647–9.
  17. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28 (10): 2731–9.
  18. Velicer W. F., Fava J.L. An evaluation of the effects of variable sampling on component, image, and factor analysis. Multivar. Behav. Res. 1987; 22: 193–210.
  19. Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marra M.A. Circos: An information aesthetic for comparative genomics. Genome Research. 2009; 19 (9): 1639–45.
  20. Franceschini A., Szklarczyk D., Frankild S., Kuhn M., Simonovic M., Roth A. et. al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucl. Acid Res. 2013; 41 (D1): 808–15.
  21. McGrath M., Gey van Pittius N.C., Van Helden P.D., Warren R.M. and Warner D.F. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J. of Antimicrob. Chem. 2014; 69 (2): 292–302.