ANALYSIS OF THE INTERFERONS OF I, II AND III TYPES, IL23 AND ANTIVIRAL PROTEIN MXA FOR MULTIPLE SCLEROSIS

DOI: https://doi.org/None

Ospelnikova T.P., Morozova O.V., Isaeva E.I., Lizhdvoy V.Yu., Kolodyaznaya L.V. , Andreeva S.A., Kotov S.V., Еrshov F.I.

Introduction. A lot of factors of innate and specific immunity are involved in development of the autoimmune diseases – multiple sclerosis (MS) that cause the damages of myelin envelopes of nerve fibres with irreversible neurological consequences. To decrease the levels of autoantibodies interferon (IFN) β analogs that induce apoptosis of dendritic cells are used for treatment of MS. The aim of the study: comparative analysis of interferons α, β, γ, λ, IL 23 and antiviral protein МхА for patients with MS during their treatment with IFNβ-1a. Methods. Reverse transcription with subsequent real time PCR with fluorescent hydrolysis probe; ELISA; analysis of interferon status in tissue cultures. Results. Analysis of mRNA in lymphocytes of blood of patients with MS showed essentially enhanced quantities of IFN I, III types and IL23 in comparison with the control group of donors. For patients with MS high levels of proteins IFNβ and IFNγ were associated with their functional insufficiency. Treatment of patients with IFNβ 1а resulted in lowering of IFNα, β andIL23 mRNA. Decrease of IFNλ was not found. Multidirectional fluctuations of MxA mRNA permitted to suggest an independence of its regulation from exogenous recombinant IFNβ. Conclusion. Enhanced quantities of IFN α, β, λ and IL23 mRNA as well as high levels of functionally deficient proteins IFN β and γ were revealed in blood of patient with MS compared to control group of donors. Treatment of the patients with IFNβ 1а resulted in significant decrease of IFN I type and IL23 gene expression parallel with stabilization of neurological status.
Keywords: 
multiple sclerosis, interferons α, β, γ, λ, interleukin 23, antiviral protein MxA

Список литературы: 
  1. Gusev E.I., Zavalishin I.A., Boyko A.N. red. Rasseyannyy skleroz. M.: Real Taym, 2011; 520 [Gusev E.I., Zavalishin I.A., Bojko A.N. eds. Multiple sclerosis. M.: Real Tajm, 2011; 520 (in Russian)]
  2. Damal K., Stoker E., Foley J.F. Optimizing therapeutics in the management of patients with multiple sclerosis: a review of drug efficacy, dosing, and mechanisms of action. Biologics. 2013; 7: 247–58.
  3. Duddy M., Niino M., Adatia F., Hebert S., Freedman M., Atkins H., Kim H.J., Bar-Or A. Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J. Immunol. 2007; 178 (10): 6092–9.
  4. Von Büdingen H.C., Bar-Or A., Zamvil S.S. B cells in multiple sclerosis: connecting the dots. Curr. Opin. Immunol. 2011; 23 (6): 713–20.
  5. Oksenberg J.R., Baranzini S.E. Multiple sclerosis genetics – is the glass half full, or half empty? Nat. Rev. Neurol. 2010; 6 (8): 429–37.
  6. Goodnow C.C. Multistep pathogenesis of autoimmune disease. Cell. 2007; 130 (1): 25–35.
  7. Munz C., Lunemann J.D., Getts M.T., Miller S.D. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat. Rev. Immunol. 2009; 9 (4): 246–58.
  8. O’Shea J.J., Ma A., Lipsky P. Cytokines and autoimmunity. Nature Reviews. Immunology. 2002; 2: 37–45.
  9. Serafini B, Severa M, Columba-Cabezas S, Rosicarelli B, Veroni C, Chiappetta G, Magliozzi R, Reynolds R, Coccia EM, Aloisi F. Epstein-Barr virus latent infection and BAFF expression in B cells in the multiple sclerosis brain: implications for viral persistence and intrathecal B-cell activation. J. Neuropathol. Exp. Neurol. 2010; 69 (7): 677–93.
  10. Sospedra M., Martin R. Immunology of multiple sclerosis. Ann. Rev. Immunol. 2005; 23: 683–747.
  11. Racke M.K., Drew P.D. Toll-like receptors in multiple sclerosis. Cur. Top Microbiol. Immunol. 2009; 336: 155–68.
  12. Yen J.H., Ganea D. Interferon beta induces mature dendritic cell apoptosis through caspase-11/caspase-3 activation. Blood. 2009; 114 (7): 1344–54. doi: 10.1182/blood-2008-12-196592. Epub. 2009 Jun 16.
  13. Cheknev S.B. Vozmozhnosti izolirovannogo i kombinirovannogo primeneniya rekombinantnyh preparatov interferona-α i interferona-β v patogeneticheskoy terapii rasseyannogo skleroza. Nauchno-praktich. konfer. nevrologov. SPb, 2001; 282–3. [Cheknev S.B. The possibility of isolated and combined application of recombinant drugs of interferon-α and interferon-β in the pathogenetic therapy of multiple sclerosis.Nauchno-praktich.konfer. nevrologov. SPb, 2001; 282–3 (in Russian)]
  14. Panitch H.S., Hirsch R.L., Haley A.S., Johnson K.P. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet. 1987; 1: 893–5.
  15. Horiuchi M., Itoh A., Pleasure D., Ozato K., Itoh T. Cooperative contributions of interferon regulatory factor 1 (IRF1) and IRF8 to interferon-γ-mediated cytotoxic effects on oligodendroglial progenitor cells. J. Neuroinflammation. 2011; 8: 8. doi: 10.1186/1742-2094-8-8.
  16. Ershov F.I. Sistema interferona v norme i pri patologii. M.: Medicina, 1996; 147–55. [Ershov F.I. Interferon system in norm and at pathology M.: Meditsina, 1996; 147–55 (in Russian)]
  17. Lakin G.F. Biometriya. M.: Vysshaya shkola, 1980. [Lakin G.F. Biometrics. M.: Vysshajashkola, 1980 (in Russian)]
  18. Vaknin-Dembinsky A., Balashov K., Weiner H.L. IL-23 Is Increased in Dendritic Cells in Multiple Sclerosis and Down-Regulation of IL-23 by Antisense Oligos Increases Dendritic Cell IL-10 Production. J. of Immunology. 2006; 176: 7768–74.
  19. Hesse D., Sellebjerg F., Sorensen P.S. Absence of MxA induction by interferon beta in patients with MS reflects complete loss of bioactivity. Neurology. 2009; 73 (5): 372–7. doi: 10.1212/WNL.0b013e3181b04c98.
  20. Noronha A. Neutralizing antibodies to interferon. Neurology. 2007; 68 (Suppl. 4): 16–22.