EXPRESSION OF HUMAN PROTEINS UNDER THE EXTERNAL AND INTERNAL IRRADIATION

DOI: https://doi.org/None

Rybkina V.L., Azizova T.V.

The data concerning the changes of expression and posttranslational modification of the human protein under the influence of the external and internal irradiation in vivo and in vitro are presented in this review. The investigation of protein expression and posttranslational modification of proteins is a key for understanding of mechanisms of the development of immediate and remote effects of radiation exposure. The importance of the investigations of the protein expression under irradiation is determined also by the possibility of the using the obtained data for biological indication and biological dosimetry. Besides, proteins may be biological markers of radiosensitivity and radioresistance, that is of great importance in oncology in treatment of malignant tumors and in the formation of risk group for contingents exposed to irradiation with a purpose of regular medical check-up and late effects prophylactics. The response of cells to ionizing irradiation is manifested by the activation of the great number of signaling pathways, leading to the alteration of the expression of the great quantity of proteins. First of all these proteins are signaling about the presence of DNA breaks, proteins taking part in its reparation, cell cycle control, apoptosis, proto-oncogenes, pro-inflammatory proteins, folding proteins, enzymes.
Keywords: 
expression, external irradiation, internal irradiation, biological indication, biological dosimetry

Список литературы: 
  1. Azimzadeh O., Atkinson M.J. Soile Tapio. Proteomics in radiation research: present status and future perspectives Radiat. Environ. Biophysics. 2014; 53 (1): 31–8.
  2. Scully R., Xie A. Double strand break repair functions of histone H2AX Mutat. Res. 2013; (1–2): 5–14.
  3. Bouquet F. The loss of gamma-H2AX signal is a Marker of DNA double strand breaks repair only at low levels of DNA damage. Cell Cycle. 2006; 5 (10): 1116–22.
  4. Suzuki M., Suzuki K., Kodama S., Watanabe M. Phosphorilated histone H2AX foci persist on rejoined mitotic chromosomes in normal human diploid cells exposed to ionizing radiation. Radiation Res. 2006; 165: 269–76.
  5. Hu B., Wu L., Han W., Zhang L., Chen S., Xu A., Hei T.K., Yu Z. The time and spatial effects of bystander response in mammalian cells induced by low dose radiation. Carcinogenesis. 2006; 27 (2): 245–51.
  6. Leatherbarrow E.L., Harper J.V., Cucinotta F.A. Induction and quantification of gamma-H2AX foci following low and high Let-irradiation. Int. J. Radiat. Biol. 2006; 82 (2): 111–8.
  7. Kataoka Y., Bindokas V.P. Duggman R. Flow cytometric analysis of phosphorilated histone H2X following exposure to ionizing radiation in human microvascular endothelial cells. J. Rad. Res. 2006; 47: 245–57.
  8. Sak A., Grehl S., Erichsen P., Engelhard M, Grannass A., Levegrün S., Pöttgen C., Groneberg M., Stuschke M. Gamma-H2AX foci formation in peripheral blood lymphocytes of tumor patients after local radiotherapy to different sites of the body: dependence on the dose distribution, irradiated site and time from start of treatment. Int. J. Radiation Biol. 2007; 83 (10): 639–52.
  9. Ismail H.I., Wadhra T.I., Hammarsten O. An optimized method for detecting gamma-H2AX in blood cells reveals a significant interindividual variation in the gamma-H2AX response among humans. Nucleic Acids Res. 2007; 35 (3): 336–46.
  10. Okazaki R., MoonY., Norimura T. Ionizing radiation enhances the expression of nonsteroid anti-inflammatory drag-activated gene (NAGI) by increasing the expression of TP53 in human colon cancer cells. Radiation Res. 2006; 165 (2): 125–30.
  11. Jung S., Lee S., Lee J., Li C., Ohk J-Y., Jeong H K., Lee S., Kim S., Choi Y., Kim S., Lee H., Lee M-S. Protein expression pattern in response to ionizingradiation in MCF-7 human breast cancer cells. Oncology Letters. 2012; 3: 147–54.
  12. Tsutomu S., Manabu F., Naoki K. The role of cyclin D1 in response to long term exposure to ionizing radiation Cell Cycle. 2013; 12 (17): 2738–43.
  13. Tichý A., Záskodová D., Rezácová M., Vávrová J., Vokurková D., Pejchal J., Vilasová Z., Cerman J., Osterreicher J. Gamma-radiation-induced ATM-dependent signalling in human T-lymphocyte leukemic cells, MOLT-4. Acta Biochim. Pol. 2007; 54: 281–7.
  14. Wang T., Hu Y., Dong S. Fan M., Tamae D., Ozeki M., Gao Q., Gius D., Li J.J. Co-activation of NF-κB, ERK and GADD45β in Response to Ionizing Radiation. J. Biol. Chem. 2005; 280 (5): 12593–601.
  15. Blakely W.F., Miller A.C., Muderhwa J.M., Development and validation of radiation-responsive protein bioassays for biodosimetry applications. NATO human factors and medicine panel research task group 099 «Radiation bioeffects and countermeasures» meeting held in Bethesda, Maryland, USA, June 21–23, 2005, published in AFRI CD 05-2.
  16. Yang J.Y., Xia W., Hu M. C. Ionizing radiation activates expression of FOXO3a, Fas ligand, and Bim, and induces cell apoptosis. Int. J. Oncol. 2006; 29: 643–8.
  17. Merrick A., Errington F., Milward K., O’Donnell D.,Harrington K.,Bateman A.,Pandha H.,Vile R.,Morrison E.,Selby P.,Melcher A. Immunosuppressive effects of radiation on human dendritic cells: reduced Il-12 production on activation and impairment of T-cell priming. Br. J. Cancer. 2005; 92 (8): 1450–8.
  18. Quotob S., Lachapelle S., Thorleifson E. Biological dosimetry and markers of nuclear and radiological exposures: identification of radiation responsive biomarkers using a rotary bioreactor to stimulate an in vivo environment. Project Number CFTI 0017RD(1) Health Canada.
  19. Konemann S., Bolling T., Malath J. Time and dose-dependent changes of intracellular cytokine and cytokine receptor profile of Ewing tumor subpopulations under the influence of ionizing radiation. Int. J. Radiat. Biol. 2003; 79 (11): 897–909.
  20. Van Der Meeren A., Bertho J.M., Vandamme M., Gaugler M-H. Ionizing radiation enhances IL-6 and IL-8 production by human endothelial cells. Mediators Inflamm. 1997; 6 (3): 185–93.
  21. Behrends U., Peter R., Hintermeier-Knabe R., Eissner G., Holler E., Bornkamm G.W., Caughman S.W., Degitz K. Ionizing radiation induces human intercellular adhesion molecule-1 in vitro. J. Invest. Dermatol. 1994; 103: 726–30.
  22. Cordes N., Blaese M.A., Meineke V., Van Beuningen D. Ionizing radiation induces up-regulation of functional beta-integrin in human lung tumor cell lines in vitro. Int. J. Radiat. Biol. 2002; 78 (5): 347–57.
  23. Zhou H., Ivanov V.N., Gillespie J. Geard C.R., Amundson S.A., Brenner D.J., Yu Z., Lieberman H.B., Hei T.K. Mechanism of radiation-induced bystander effect: Role of the cyclogenase-2 signaling pathway. PNAS. 2005; 102 (41): 14641–6.
  24. Kuo Mei-Ling, Kinsella T.J. Expression of Ribonucleotide Reductase after ionizing radiation in human cervical carcinoma cells. Cancer Res. 1998; 58 (5): 2245–52.
  25. Vega-Carillo H.R, Banuelos-Valensuela R., Manzanares-Acua E. Response of human lymphocytes to low gamma ray doses. Alasbimn J. 2001; 3: http:www.alasbimjournal.cl/revistas/12/linfocitos.html
  26. Pluder F., Barjaktarovic Z., Azimzadeh O., Mortl S., Kramer A., Steininger S., Sarioglu H., Leszczynski D., Nylund R., Hakanen A., Sriharshan A., Atkinson M.J., Tapio S. Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA. hy926. Radiat. Environ. Biophys. 2011; 50: 155–66.
  27. Sriharshan A., Boldt K., Sarioglu H., Barjaktarovic Z., Azimzadeh O., Hieber L., Zitzelsberger H., Ueffing M., Atkinson M.J., Tapio S. Proteomic analysis by SILAC and 2D-DIGE reveals radiation-induced endothelial response: four key pathways. J. Proteomics. 2012; 75 (8): 2319–30.
  28. Yentrapalli R., Azimzadeh O., Barjaktarovic Z., Sarioglu H., Wojcik A., Harms-Ringdahl M., Atkinson M.J., Haghdoost S., Tapio S. Quantitative proteomic analysis reveals induction of premature senescence in human umbilical vein endothelial cells exposed to chronic low-dose rate gamma radiation. Proteomics. 2013; 13 (7): 1096–107.
  29. Skiold S.B.S., Auer G., Hellman U., Naslund I., Harms-Ringdahl M., Haghdoost S. Low doses of gamma-radiation induce consistent protein expression changes in human leukocytes. Int. J. Low Radiat. 2011; 8: 374–87.
  30. Becciolini A., Porciani S., Lanini A., Balzi M.,Faraoni P. Proposal for biochemical dosimeter for prolonged space flights. Phys. Med. 2001; 17 (1): 185–6.
  31. Rybkina V.L., Azizova T.V., Scherthan H., Meineke V., Doerr H., Adamova G.V., Teplyakova O.V., Osovets S.V., Bannikova M.V., Zurochka A.V. Expression of blood serum proteins and lymphocyte differentiation clusters after Chronic Occupational Exposure to Ionizing Radiation. Radiat. Environ. Biophys. 2014; 53 (4): 659–70.
  32. Rybkina V.L., Azizova T.V., Mayneke V., Shertan G., Derr H., Adamova G.V., Teplyakova O.V., Osovec S.V., Pikulina M.V., Zurochka A.V. Vliyanie hronicheskogo oblucheniya na nekotorye pokazateli immuniteta. Immunologiya. 2015; 36 (3): 145–9. [Rybkina V.L., Azizova T.V., Scherthan H., Meineke V., Doerr H., Adamova G.V., Teplyakova O.V., Osovets S.V., Bannikova M.V., Zurochka A.V. Influence of chronic irradiation on some immune indices. Immunologija. 2015; 36 (3): 145–9 (in Russian)]
  33. Okunieff P., Chen Y., Maguire D.J., Huser A.K. Molecular markers of radiation-related normal tissue toxicity. Cancer Metastasis Rev. 2008; 3: 363–74.
  34. Kirillova E.N., Muksinova K.N., Drugova E.D., Rybkina V.L., Zaharova M.L. Immunnyy status u rabotnikov PO «Mayak» i zhiteley g. Ozerska. Voprosy radiacionnoy bezopasnosti. 2006; 2: 13–23. [Kirillova E.N., Muksinova K.N., Drugova E.D., Rybkina V.L., Zakharova M.L. Immune status in PA «Mayak» workers and Ozersk citizens. Voprosy radiacionnoj bezopasnosti. 2006; 2: 13–23 (in Russian)].
  35. Kirillova E.N., Drugova E.D., Muksinova K.N., Rybkina V.L., Zaharova M.L., Ezhova A.V., Uryadnickaya T.I., Haritonov O.E. Immunnyy status personala PO «Mayak» v pozdnie sroki posle professional`nogo oblucheniya. Immunologiya. 2007; 28 (1): 37–42. [Kirillova E.N., Drugova E.D., Muksinova K.N., Rybkina V.L., Zakharova M.L., Ezhova A.V., Urjadnickaja T.I., Kharitonov O.E. The immune status of the PA «Mayak» personal in the late period after professional irradiation. .Immunologija. 2007; 28 (1): 37–42 (in Russian)].
  36. Konemann S., Bolling T., Malath J., Time and dose-dependent changes of intracellular cytokine and cytokine receptor profile of Ewing tumor subpopulations under the influence of ionizing radiation. Int. J. Radiat. Biol. 2003; 79 (11): 897–909.
  37. Solnceva O.S., Kalinina N.M., Bychkova N.M. Rol` citokinov v osushhestvlenii apoptoticheskih processov kletok immunnoy sistemy u lic, podvergshihsya vozdeystviyu ioniziruyushhey radiacii v malyh dozah. Immunologiya. 2000; 3: 22–4. [Solnceva O.S., Kalinina N.M., Bychkova N.M. The role of cytokines in realization of apoptotic processes in the immune system cells in the individuals exposed to low doses of ionizing radiation. Immunologija. 2000; 3: 22–4 (in Russian)].
  38. Hagan M., Yacoub A., Dent P. Ionizing radiation causes a dose-dependent release of transforming growth factor alpha in vitro from irradiated xenografts and during palliative treatment of hormone-refractory prostate carcinoma. Clinical Cancer Research. 2004; 10 (9): 5724–31.
  39. Wickremeskera J.K., Chen W., Cannan R.J., Stubbs R.S. Serum proinflammatory cytokine response in patients with advanced liver tumors following selective internal radiation therapy (SIRT) with (90) Yttrium microspheres. Int. J. Radiat. Oncol. Biol. Phys. 2001; 49 (4): 1015–21.
  40. Mal`cev V.N., Ivanov A.A., Mihaylov V.F. Mazurik V.K. Individual`nyy prognoz tyazhesti i ishoda ostroy luchevoy bolezni po immunologicheskim pokazatelyam. Rad. biol. radioe`kol. 2006; 46 (2): 152–8. [Mal’tsev V.N., Ivanov A.A., Mikhaĭlov V.F., Mazurik V.K. The individual prognosis of the gravity and of the outcome of acute radiation disease based on immunological indexes. Radiats. Biol. Radioecol. 2006; 46 (2): 152–8 (in Russian)].
  41. Matsumura S., Wang B., Kawashima N. Braunstein S,Badura M.,Cameron T.O., Babb J.S., Schneider R.J., Formenti S.C., Dustin M.L., Demaria S. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J. Immunol. 2008; 181 (5): 3099–107.
  42. Rybkina V.L., Azizova T.V. Immunologicheskie biomarkery vnutriutrobnogo oblucheniya. V knige: Mediko-biologicheskie problemy deystviya radiacii. Mezhdunarodnaya konferenciya. M., 2012; 11. [Rybkina V.L., Azizova T.V. The Immunological biomarkers of the intrauterine irradiation. In the book: Biomedical problems of radiation exposure. International conference. M., 2012; 11 (in Russian)]
  43. Rybkina V.L., Azizova T.V. Nekotorye gumoral`nye faktory immuniteta u lic, obluchennyh vnutriutrobno. V knige: Hronicheskoe radiacionnoe vozdeystvie: e`ffekty malyh doz. Chelyabinsk: 2010; 40–1. [Rybkina V.L., Azizova T.V. Some humoral immunity factors in intrauterine irradiated persons. In the book: Chronic radiation exposure: low doses effects. Chelyabinsk: 2010; 40–1 (in Russian)]
  44. Yarilin A.A., Belyakov I.M., Nadezhdina I.M., Simonova A.V. Individual`nye immunologicheskie parametry u likvidatorov i pacientov s posledstviyami ostroy luchevoy bolezni cherez 5 let posle Chernobyl`skoy avarii. Radiobiologiya. 1992; 32 (6): 771–8. [Jarilin A.A., Beljakov I.M., Nadezhdina I.M., Simonova A.V. Individual immunological parameters in clean-up workers and acute radiation sickness patients 5 years after Chernobyl accident. Radiobiologiia.1992; 32 (6): 771–8 (in Russian)]
  45. Rossner P. Jr., Chvatalova I., Shmuczerova J., Milcova A, Rössner P, Sram R.J. Comparison of p53 levels in lymphocytes and in blood plasma of nuclear power plant workers. Mutat. Res. 2004; 55: 1245–54.
  46. Löbrich M., Rief N., Kühne M. Heckmann M., Fleckenstein J., Rübe C., Uder M. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc. Natl. Acad. Sci. USA. 2005; 102 (25): 8984–9.
  47. Koterov A.N., Trebenok Z.A., Pushkareva N.B. Filippovich I.V. Metallotioneiny v limfocitah krovi postradavshih pri Chernobyl`skoy avarii. Medicinskaya radiologiya i radiacionnaya bezopasnost`. 1995; 40 (3): 14–5. [Koterov A.N., Trebenok Z.A., Pushkareva N.B.Metallothioneins in blood lymphocytes of persons suffered from Chernobyl accident. Medicinskaja radiologija i radiacionnaja bezopasnost’. 1995; 40 (3): 14–5 (in Russian)]
  48. Zaharova M.L., Rybkina V.L., Kirillova E.N., Drugova E.D., Muksinova K.N., Sokolova S.N., Uryadnickaya T.I. Issledovanie soderzhaniya onkomarkerov u rabotnikov PO «Mayak», podvergshihsya deystviyu plutoniya. Voprosy radiacionnoy bezopasnosti. 2006; 2: 5–12. [Zakharova M.L., Rybkina V.L., Kirillova E.N., Drugova E.D., Muksinova K.N., Sokolova S.N., Urjadnickaja T.I. The Investigation of the tumor markers content in PA «Mayak» workers exposed to plutonium. Voprosy radiacionnoj bezopasnosti. 2006; 2: 5–12 (in Russian)]
  49. Menard C., Johann D., Lowenthal M. Discovering slinical biomarkers of ionizing radiation exposure with serum proteomic analyses. Cancer Res. 2006; 66 (2): 1844–50.