THE HUMORAL IMMUNE RESPONSE TO THE ANTIGEN IMMOBILIZED ON NANOPARTICLES MADE FROM COPOLYMER OF POLYLACTIC ACID AND POLYETHYLENE GLYCOL

DOI: https://doi.org/10.29296/24999490-2019-03-06

R.G. Sakhabeev(1), D.S. Polyakov(1), N.A. Grudinina(1), A.A. Vishnya2, A.A. Kozlovskaia3, E.S. Sinitsyna4, 5, V.A. Korzhikov-Vlakh4, T.B. Tennikova4, M.M. Shavlovsky1, 6 1-Institute of Experimental Medicine, Akademika Pavlova Street, 12, St. Petersburg, 197376, Russian Federation; 2-Herzen State Pedagogical University of Russia, Embankment of the Moika River, 48, St. Petersburg, 191186, Russian Federation; 3-Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, St. Petersburg, 195251, Russian Federation; 4-St. Petersburg State University, University Embankment 7–9, St. Petersburg, 199034, Russian Federation; 5-Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr., 3, St. Petersburg, 119004, Russian Federation; 6-I.I. Mechnikov North-Western State Medical University, Kirochnaya street, 41, St. Petersburg, 191015, Russian Federation E-mail: [email protected]

Introduction. Currently, polymer nano-and microparticles are a promising material for the targeted delivery of drugs to human organs and tissues. The influence of these particles on humoral and cellular immune responses has not been studied. The aim of the study. The aim of the work was to study the immunogenicity of the protein associated with polymer biodegradable nanoparticles based on polylactic acid copolymer with polyethylene glycol. Methods. Activated nanoparticles were used for covalent binding of the model protein. Two groups of 40 mice were immunized. Nanoparticles from the copolymer of polylactic acid and polyethylene glycol, which were covalently bound to the model protein, were introduced to the experiment group. The control group was immunized with a mixture of the same protein and unmodified nanoparticles. 4 immunizations were carried out at intervals of 2 weeks. Blood sampling of mice was carried out 13 days after each immunization. The content of specific antibodies to the model antigen in the serum of mice was determined by the ELISA method. Results. According to confocal microscopy, the model protein β2M-sfGFP was strongly adsorbed on the surface of nanoparticles. The amount of immobilized protein was shown to amount of 10 µg per 1 mg of nanoparticles. Сonclusion. Using the non-parametric statistical Mann-Whitney test, it was shown that at each stage of immunization the content of antibodies in the control group was significantly higher than in the experiment group (p
Keywords: 
particles of a copolymer of polylactic acid and polyethylene glycol, humoral immune response, green fluorescent protein

Список литературы: 
  1. Фараонова Т.Е., Оленина Л.В., Колесанова Е.Ф. Возможные клеточные рецепторы вируса гепатита С. Биомедицинская химия. 2008; 54 (2): 154–66. [Faraonova T.E., Olenina L.V., Kolesanova E.F. Vozmozhnye kletochnye receptory virusa gepatita C. Biomedicinskaja himija. 2008; 54 (2): 154–66 (in Russian)]
  2. 2. Myszka D. G., Sweet R. W., Hensley P., Brigham-Burke M., Kwong P. D., Hendrickson W. A., Doyle M. L. Energetics of the HIV gp120-CD4 binding reaction. Proceedings of the National Academy of Sciences. 2000; 97 (16): 9026–31.
  3. 3. Гурцевич В.Э., Демина Е.А., Сенюта Н.Б., Ботезату И.В., Смирнова К.В., Душенькина Т.Е., Максимович Д.М., Парамонова У.В., Монин И.С., Лихтенштейн А.В.Вирус Эпштейна–Барр у больных классической лимфомой Ходжкина. Клиническая онкогематология. фундаментальные исследования и клиническая практика. 2018; 11 (2): 160–6. [Gurcevich V.Je., Demina E.A., Senjuta N.B., Botezatu I.V., Smirnova K.V., Dushen’kina T.E., Maksimovich D.M., Paramonova U.V., Monin I.S., Lihtenshtejn A.V.Virus Jepshtejna–Barr u bol’nyh klassicheskoj limfomoj Hodzhkina. Klinicheskaja onkogematologija. fundamental’nye issledovanija i klinicheskaja praktika. 2018; 11 (2): 160–6 (in Russian)]
  4. 4. Боровая Т.Г. К вопросу о роли клеточных рецепторов во взаимодействии с вирусами простого герпеса. Морфологические ведомости. 2013; 4: 116–28. [Borovaja T.G. K voprosu o roli kletochnyh receptorov vo vzaimodejstvii s virusami prostogo gerpesa. Morfologicheskie vedomosti. 2013; 4: 116–28 (in Russian)]
  5. 5. Богачек М.В., Зайцев Б.Н., Секацкий С.K., Протопопова Е.В., Терновой В.А., Иванова А.В., Качко А.В., Иванисенко В.А., Дитлер Г., Локтев В.Б. Характеристика С-концевой части гликопротеина Е вируса Западного Нила и оценка силы его взаимодействия с aVß3 интегрином как с предполагаемым клеточным рецептором Биохимия. 2010; 75 (4): 571–81. [Bogachek M.V., Zajcev B.N., Sekackij S.K., Protopopova E.V., Ternovoj V.A., Ivanova A.V., Kachko A.V., Ivanisenko V.A., Ditler G., Loktev V.B. Harakteristika S-koncevoj chasti glikoproteina E virusa Zapadnogo Nila i ocenka sily ego vzaimodejstvija s aVß3 integrinom kak s predpolagaemym kletochnym receptorom Biohimija. 2010; 75 (4): 571–81(in Russian)]
  6. 6. Ne Raux H.L., Flamand A., Blondel D. Interaction of the Rabies Virus P Protein with the LC8 Dynein Light Chain. J. of virology. 2000; 74 (21): 10212–6 https://doi.org/10.1128/JVI.74.21.10212-10216.2000
  7. 7. Calzoni E., Cesaretti A, Polchi A, Di Michele A, Tancini B, Emiliani C. Biocompatible Polymer Nanoparticles for Drug Delivery Applications in Cancer and Neurodegenerative Disorder Therapies. J. Funct Biomater. 2019; 10 (4) https://doi.org/10.3390/jfb10010004.
  8. 8. Solovyov K.V., Polyakov D.S., Grudinina N.A., Egorov V.V., Morozova I.V., Aleynikova T.D. and Shavlovsky M.M.. Expression in E. coli and purification of the fibrillogenic fusion proteins TTR-sfGFP and ß2M-sfGFP. Preparative biochemistry and biotechnology. 2011; 41 (4): 337–49. http://www.ncbi.nlm.nih.gov/pubmed/21967335
  9. 9. Поляков Д.С., Антимонова О.И., Сахабеев Р.Г., Грудинина Н.А., Ходова А.Е., Синицына Е.С., Коржиков-Влах В.А., Тенникова Т.Б., Шавловский М.М. Влияние наночастиц из полимолочной кислоты на иммуногенность связанного с ними белка. Инфекция и иммунитет. 2017; 7 (2): 123–9. https://doi.org/10.15789/2220-7619-2017-2-123-129 [Polyakov D.S., Antimonova O.I., Sakhabeev R.G., Grudinina N.A., Khodova A.E., Sinitsyna E.S., Korzhikov-Vlakh V.A., Tennikova T.B., Shavlovsky M.M. Polylactic acid nanoparticles influence on immunogenicity of the protein bound with them. Russian Journal of Infection and Immunity. 2017; 7 (2): 123–9. https://doi.org/10.15789/2220-7619-2017-2-123-129 (in Russian)]
  10. 10. Поляков Д.С., Грудинина Н.А., Богословская Т.Ю., Соколов А.В., Мандельштам М.Ю., Васильев В.Б. Получение в клетках HEK293 химерного белка, состоящего из рецептора LDL и EGFP; перспективная система для оценки эффектов мутаций в гене LDLR. Цитология. 2017; 59 (12): 881–7. [Poljakov D.S., Grudinina N.A., Bogoslovskaja T.Ju., Sokolov A.V., Mandel’shtam M.Ju., Vasil’ev V.B. Poluchenie v kletkah HEK293 himernogo belka, sostojashhego iz receptora LDL i EGFP; perspektivnaja sistema dlja ocenki jeffektov mutacij v gene LDLR. Citologija. 2017; 59 (12): 881–7 (in Russian)]
  11. 11. Поляков Д.С., Грудинина Н.А., Соловьев К.В., Егоров В.В., Сироткин А.К., Алейникова Т.Д., Тотолян Арег А., Шавловский М.М. Бета-2-микроглобулиновый амилоидоз: фибриллогенез природного и рекомбинантных бета-2-микроглобулинов человека. Медицинский академический журнал. 2010; 10 (2): 40–9. ISSN 1608-4101 http://elibrary.ru/item.asp?id=22969470 [Poljakov D.S., Grudinina N.A., Solov’jov K.V., Egorov V.V., Sirotkin A.K., Alejnikova T.D., Totoljan Areg A., Shavlovskij M.M. Beta-2-mikroglobulinovyj amiloidoz: fibrillogenez prirodnogo i rekombinantnyh beta-2-mikroglobulinov cheloveka. Medicinskij akademicheskij zhurnal. 2010; 10 (2): 40–9. ISSN 1608-4101 http://elibrary.ru/item.asp?id=22969470 (in Russian)]
  12. 12. Поляков Д.С., Сахабеев Р.Г., Шавловский М.М. Частичная денатурация рекомбинантного белка для его аффинного выделения. Прикладная биохимия и микробиология. 2016; 52 (1): 122–7. http://elibrary.ru/item.asp?id=25069770 [Переводная версия статьи: Polyakov D.S., Sakhabeyev R.G., Shavlovsky M.M., Partial Denaturation of Recombinant Protein for Affinity Purification. Prikladnaya Biokhimiya i Mikrobiologiya. 2016; 52 (1): 122–7 (in Russian)]
  13. 13. Kirill V. Solovyov, Anna M. Kern, Natalya A. Grudinina, Tatyana D. Aleynikova, Dmitry S. Polyakov, Irina V. Morozova, Michael M. Shavlovsky. Genetic structures and conditions of their expression, which allow receiving native recombinant proteins with high output. International Journal of biomedicine. 2012; 2 (1): 45–9 http://elibrary.ru/item.asp?id=20245469 http://ijbm.org/articles/2_1_BR1.pdf