COMPUTATIONAL TOOLS AND METHODS FOR THE IMPLEMENTATION AND ELABORATION OF MOLECULAR DOCKING FOR ENZYMES OF THE MEDICAL DESTINATION

DOI: https://doi.org/10.29296/24999490-2020-02-03

A.V. Maksimenko Institute of Experimental Cardiology, National Medical Research Center for Cardiology, 3rd Cherepkovskaya Street 15A, Moscow, 121552, Russian Federation E-mail: [email protected]

At present biomedical research is based on joint fulfillment of theoretical and experimental investigations of various derivatives of potential therapeutic destination. Well-balanced combination of noted studies is provided for the high reliability of ensemble for obtained results. The implementation of molecular docking of high-molecule pharmacological compounds with different ligands of their natural microenvironment is notably important among such investigations. It should be noted the perspectives of such results for study of enzymes. The investigations of such kind are directed on ascertainment of mechanism of the action of these agents in biological systems and grounding of productive manners for obtaining of the high efficacy of drug preparations of the enzyme nature. The implementation of molecular docking was conduced the lead-in of glycosaminoglycans (components of endothelial glycocalyx of the protective layer of the vessel wall) to circle of research interest. The implementation of molecular docking with elaboration of its data by methods of molecular dynamics became a productive approach for development of theoretical models of protein- glycosaminoglycan complexes. Algorithms of docking and scoring functions, conformational alterations of enzyme structure (on short /ps and ns/ more continual scale of time) were considered. The ponderable challenge of molecular docking progress was demonstrated as using of notion of the enzyme structure flexibility due to a mode of molecular dynamics with modeling of all freedom degrees in enzyme-ligand complex.
Keywords: 
molecular docking, scoring function, tertiary enzyme structure, glycosaminoglycan ligands, design of novel drug derivative molecules

Список литературы: 
  1. Maksimenko A.V. Development and applica- tion of targeted therapeutic protein conju- gates. Russ. J. Gen. Chem. 2014; 84 (2): 357–63. https://doi.org/10.1134/S1070363214020376
  2. Maksimenko A.V. Results and achievements in the engineering of pharmacological enzymes for clinical application. Med. Res. Arch. 2018; 6 (1): 1–13. http://journals.ke-i.org/index.php/mra
  3. Maksimenko A.V. Molekuljarnye aspekty transljatsionnoj kardiologii v issledo- vanijah sosudistoj stenki. Kardiologija. 2017; 57 (7): 66–79. https://doi.org/10.18087/ cardio.2017.7.10008 [Maksimenko A.V. Molecular aspects of trans- lational cardiology in vascular wall research. Kardiologiia. 2017; 57 (7): 66–79 (in Russian). https://doi.org/10.18087/cardio.2017.7.10008]
  4. Reitsma S., Slaaf D.W., Vink H., van Zandvoort M.A., onde Egbrink M.G. The endothelial glycocalyx: composition, function, and visuali- zation. Pflüger’s Arch. 2007; 454 (3): 345–59.
  5. Maksimenko A.V. Translational research into vascular wall function: regulatory effects of sys- temic and specific factors. J. Transl. Sci. 2017; 3 (2): 1–10. https://doi.org/10.15761/JTS.1000180
  6. Nieuwdorp M., Meuwese M.C., Vink H., Hoekstra J.B., Kastelein J.J., Stroes E.S.G. The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr. Opin. Lipidol. 2005; 16: 507–11.
  7. Broekhuisen L.N., Moojij H.L., Kastelein J.J., Stroes E.S.G., Vink H., Nieuwdorp M. Endothe- lial glycocalyx as potential diagnostic and therapeutic target in cardiovascular disease. Curr. Opin. Lipidol. 2009; 20: 57–62.
  8. Maksimenko A.V. Endotelial'nyj glikoka- liks – nastrojschik sosudistogo gomeosta- za. Novye issledovatel'skie zadachi i perspektivy zaschity stenki krovenosnyh so- sudov. Izv. AN. Ser. Him. 2015; 64 (9): 2036–42. [Maksimenko A.V. Endotrhelial glycocalyx as an orchestrator of vascular homeostasis. New research problems and prospects for vessel wall protection. Russ. Chem. Bull., Int. Ed. 2015; 64 (9): 1–7 (in Russian)]
  9. Yang J., Chi L. Characterization of structural motifs for interactions between glycosamino- glycans and proteins. Carbohydrate Res. 2017; 452: 54–63.
  10. Almond A. Multiscale modeling of glycosa- minoglycan structure and dynamics: current methods and challenges. Curr. Opin. Struct. Biol. 2018; 50: 58–64. http://doi.org/10.1016/j. sbi.2017.11.008
  11. Sankaranarayanan N.V., Nagarajan B., Desai U.R. So you think computational approaches to understanding glycosaminoglycan – protein interactions are too dry and too rigid? Think again! Curr. Opin. Struct. Biol. 2018; 50: 91–100. http://doi.org/10.1016/j.sbi.2017.12.004
  12. Griffith A.D., Rogers C.J., Miller C.M., Abrol R., Hsieh-Wilson L.C., Goddard III W.A. Predicting glycosaminoglycan surface protein interac- tions and implications for studying axonal growth. Proc. Natl. Acad. Sci. USA. 2017; 114 (52): 13697–702. http://doi.org/10.1073/ pnas.1715093115
  13. Schulz-Gasch T., Stahl M. Binding site charac- teristics in structure-based virtual screening: evaluation of current docking tools. J. Mol. Model. 2003; 9: 47–57. http://doi.org/10.1007/ s00894-002-0112-y
  14. Xu D., Esko J.D. Demystifying heparan sulfate – protein interactions. Ann. Rev. Biochem. 2014; 83: 129–57. https://doi.org/10.1146/annurev- biochem-060713-035314
  15. Woods R.J., Tessier M.B. Computational glycosci- ence: characterizing the spatial and temporal properties of glycans and glycan-protein com- plexes. Curr. Opin. Struct. Biol. 2010; 20: 575–83.
  16. Zhou Z., Bates M., Madura J.D. Structure modeling, ligand binding, and binding affinity calculation (LR-MM-PBSA) of human hepara- nase for inhibition and drug design. Proteins: Structure, Function, and Bioinformatics. 2006; 65 (3): 580–92.
  17. Maksimenko A.V., Bibilashvili R.Sh. Konfor- matsionnye perehody na 3D modeli bych'ej testikuljarnoj gialuronidazy pri moleku- ljarnom dokinge s glikozaminoglikanovymi ligandami. Bioorgan. Himija. 2018; 44 (2): 147– 57. http://doi.org/10.1134/S1068162018020048 [Maksimenko A.V., Beabealashvili R.S. Confor- mational transitions in 3D model of bovine tes- ticular hyaluronidase during molecular docking with glycosaminoglycan ligands. Russ. J. Bioor- gan. Chem. 2018; 44 (2): 144–51 (in Russian). http://doi.org/10.1134/S1068162018020048]
  18. Hage K.E., Brickel S., Hermelin S.,Gaulier G., Schmidt C., Bonacina L., van Keulen S.C., Bhattacharyya S., Chergui M., Hamm P., Rothlisberger U., Wolf J.-P., Meuwly M. Implica- tion of short time scale dynamics on long time process. Struct. Dyn. 2017; 4: 061507. http:// doi.org/10.1063/1/4996448
  19. Meng X.-Y., Zhang H.-X., Mezei M., Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011; 7 (2): 146–57.
  20. Zhang L., Ai H.-X., Li S.-M., Qi M.-Y., Zhao J., Liu H.-S. Virtual screening approach to identifying influenza virus neuraminidase inhibitors using molecular docking combined with machine- learning-based scoring function. Oncotarget. 2017; 8 (47): 83142–54.
  21. Jug G., Anderluh M., Tomasic T. Comparative evaluation of several docking tools for dock- ing small molecule ligands to DC-SIGN. J. Mol. Model. 2015; 21: 164. http://doi.org/10.1007/ S00894-015-2713-2