IMMUNOHISTOCHEMICAL STUDY OF TRANSCRIPTION FACTORS NEUROD1, PROX1, FOXM1, SOMATOSTATIN, AND CXCR4 RECEPTORS, CD38 IN GLIOBLASTOMAS TO DEVELOP NEW APPROACHES FOR THE TARGETED THERAPY

DOI: https://doi.org/10.29296/24999490-2020-02-08

B.E. Galkovsky, L.B. Mitrofanova, D.A. Gulyaev, Y. S. Lakhina, Y.S. Osipov Almazov National Medical Research Centre, 197143, Russian Federation, St. Petersburg, Akkuratova str., 2, E-mail: [email protected]

Currently, glioblastoma is an extremely malignant tumor, for which treatment only temozolomide is relatively effective. Aim to study the expression and variants of coexpression of transcription factors NeuroD1, Prox1, FoxM1, somatostatin receptors of the 2nd and 5th type, CD38 and CXCR4 receptors in glioblastoma. The methods included an immunohistochemical study with antibodies to NeuroD1, CXCR4, Prox1, FoxM1, CD38, SSTR2, SSTR5 and morphometric analysis of glioblastoma fragments from 22 patients (surgical material). Results. A high level of expression (>50% of the cells) of FoxM1 was detected in 85,7% of glioblastomas samples. The average expression level of FoxM1 accouned of 82,8±5,5%. NeuroD1 was expressed in the nuclei of glioblastoma cells in 100% of cases, the average level of its expression was 95,4±0,7%. High levels of CXCR4 expression were detected in 16 tumors (76,2%). The average expression level of CXCR4 was 76,2±6,1%. Prox1 was expressed in 57,1% of cases with an average expression level of 58,4±7,0%. All of the above proteins were found in the tumor cells and the walls of its vessels. SSTRs of the 2nd and 5th types were expressed in the cells of the vascular walls in all cases, the expression level was 2,2±1,1 and 6,7±1,2%, respectively. Marked expression of CD38 was observed in only 9,5% of cases. The average level of expression of CD38 – 10,8±3,4%. When analyzing combinations of marker expression, FoxM1+/NeuroD1+/Prox1-/CXCR4+/ CD38- immunophenotype was most often found (in 38,1% of cases).Conclusion. As a result of the study, the expression of CD38 was detected for the first time in glioblastoma cells. High levels of expression of the studied proteins were recorded in the tumor cells and in walls of its vessels. The immunophenotypic heterogeneity of glioblastoma was determined, the most common variant of protein combination in one tumor, FoxM1+/NeuroD1+/Prox1-/CXCR4+/CD38-, was revealed. According to the data obtained, a new personalized approach to treatment is required with the definition of targets for exposure and the corresponding spectrum of drugs in each individual case.
Keywords: 
glioblastoma, immunohistochemical study, transcription factors, FoxM1, CXCR4, targeted therapy

Список литературы: 
  1. Thakkar J.P., Dolecek T.A., Horbinski C., Ostrom Q.T., Lightner D.D., Barnholtz-Sloan J.S. and Villano J.L. Epidemiologic and Molecular Prognostic Review of Glio- blastoma. Cancer Epidemiol Biomarkers Prev. 2014; 23 (10): 1985–96. https://doi. org/10.1158/1055-9965.EPI-14-0275. Epub 2014 Jul 22.
  2. Chakrabarti I., Cockburn M., Cozen W., Wang Y., Preston-Martin S. A population- based description of glioblastoma multi- forme in Los Angeles County, 1974–1999. Cancer. 2005; 104 (12): 2798–806. https:// doi.org/10.1002/cncr.21539.
  3. Davis M. Glioblastoma: Overview of Disease and Treatment. Clin. J. Oncol. Nurs. 2016; 20 (5 Suppl): 2–8. https://doi. org/10.1188/16.CJON.S1.2-8.
  4. Tamimi A.F., Juweid M. Epidemiology and Outcome of Glioblastoma. In: De Vlee- schouwer S, editor. Glioblastoma [Internet]. Brisbane (AU): Codon Publications; 2017 Sep 27. Chapter 8. Available from: https:// www.ncbi.nlm.nih.gov/books/NBK470003/https://doi.org/10.15586/codon.glioblas- toma.2017.ch8
  5. Malmström A., Grønberg B.H., Marosi C., Stupp R., Frappaz D., Schultz H., Abacio- glu U., Tavelin B., Lhermitte B., Hegi M.E. Temozolomide versus standard 6-week radiotherapy versus hypofractionated ra- diotherapy in patients older than 60 years with glioblastoma: the Nordic randomised, phase 3 trial. Lancet Oncol. 2012; 13 (9): 916–26. https://doi.org/10.1016/S1470- 2045(12)70265-6. Epub 2012 Aug 8.
  6. Mrugala M.M. Advances and challenges in the treatment of glioblastoma: a clinician’s perspective. Discov Med. 2013; 15 (83): 221–30. http://www.discoverymedicine. com/Maciej-M-Mrugala/2013/04/25/ad- vances-and-challenges-in-the-treatment- of-glioblastoma-a-clinicians-perspective/.
  7. Burger J.A., Kipps T.J. CXCR4: a key recep- tor in the crosstalk between tumor cells and their microenvironment. Blood. 2006; 107 (5): 1761–7. https://doi.org/10.1182/ blood-2005-08-3182.Epub 2005 Nov 3.
  8. Wang Z., Zhang S., Siu T., Huang S. Glioblas- toma Multiforme Formation and EMT: Role of FoxM1 Transcription Factor. Curr Pharm Des. 2015; 21 (10): 1268–71. https://doi.org/ 10.2174/1381612821666141211115949.
  9. Sun L.C., Coy D.H. Somatostatin receptor- targeted anti-cancer therapy. Curr Drug Deliv. 2011; 8 (1): 2–10. https://doi. org/10.2174/156720111793663633
  10. Elsir T., Smits A., Lindström M.S., Nistér M. Transcription factor PROX1: its role in devel- opment and cancer. Cancer Metastasis Rev. 2012; 31 (3–4): 793–805. https://doi. org/10.1007/s10555-012-9390-8.
  11. Levy A., Blacher E., Vaknine H., Lund F.E., Stein R., Mayo L. CD38 deficiency in the tumor microenvironment attenu- ates glioma progression and modulates features of tumor-associated microglia/ macrophages. Neuro Oncol. 2012; 14 (8): 1037–49. https://doi.org/10.1093/neuonc/ nos121. Epub 2012 Jun 14.
  12. Gal'kovskij B.E., Vorob'eva O.M., Mitro- fanova L.B. Kliniko-morfologicheskoe issledovanie prognosticheskih fakto- rov NeuroD1, HLA-DR i Ki-67 v razlichnyh tipah adenom nadpochechnikov i gipofiza Medlajn. 2017; 18: 572–90. http://www. medline.ru/public/art/tom18/art39.html [Gal’kovskij B.E, Vorob’eva O.M., Mitrofano- va L.B. Clinical and morphological study of prognostic factors NeuroD1, HLA-DR and Ki-67 in various types of adenomas of adre- nal and pituitary glands Medlajn. 2017; 18: 572–90. http://www.medline.ru/public/art/ tom18/art39.html (in Russian)]
  13. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Prei- bisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9 (7): 676–82. https://doi.org/10.1038/nmeth.2019.
  14. Sonikpreet A., Manna A., Schiapparelli P., Ailawadhi S., Paulus A., Rosenfeld S., Chanan-Khan A.A., Quinones-Hinojosa A. CD38-targeted therapy in glioblastoma:A step forward. J. Clin. Oncol. 2018; 36 (15): e14030. https://doi.org/10.1200/ JCO.2018.36.15_suppl.e14030
  15. Lohela M., Alitalo K. Tumor Angiogenesis: Basic Mechanisms and Cancer Therapy 1st ed. Marmé D, Fusenig N, Berlin: Springer Science & Business Media. 2008; 327.
  16. Richardson P.J. CXCR4 and Glioblastoma Anticancer Agents Med Chem. 2016; 16 (1): 59–74. https://doi.org/10.2174/1871520 615666150824153032.
  17. Alvarez-Fernández M., Medema R.H. Novel functions of FoxM1: from molecular mechanisms to cancer therapy. Front Oncol. 2013; 3: 30. https://doi.org/10.3389/ fonc.2013.00030. eCollection 2013.
  18. Kaemmerer D., Schindler R., Mußbach F., Dahmen U., Altendorf-Hofmann A., Dirsch O., Sänger J., Schulz S., Lupp A. Somatostatin and CXCR4 chemokine receptor expression in hepatocellular and cholangiocellular carcinomas: tumor capillaries as promis ing targets. BMC Cancer. 2017; 17 (1): 896. https://doi.org/10.1186/s12885-017-3911-3.
  19. Guichet P.O., Bieche I., Teigell M., Serguera C., Rothhut B., Rigau V., Scamps F., Ripoll C., Vacher S., Taviaux S., Chevassus H., Duffau H., Mallet J., Susini A., Joubert D., Bauchet L., Hugnot J.P. Cell death and neuronal differentiation of glioblastoma stem-like cells induced by neurogenic transcription factors. Glia. 2013; 61 (2): 225–39. https://doi.org/10.1002/glia.22429. Epub 2012 Oct 9.
  20. Vieira L. Neto, Boguszewski C.L., Araújo L.A., Bronstein M.D., Miranda P.A., Musolino N.R., Naves L.A., Vilar L., Ribeiro-Oliveira A. Júnior, Gadelha M.R. A review on the diagnosis and treatment of patients with clinically nonfunc- tioning pituitary adenoma by the Neuroen- docrinology Department of the Brazilian Society of Endocrinology and Metabolism. Arch Endocrinol Metab. 2016; 60 (4): 374–90. https://doi.org/10.1590/2359-3997000000179.
  21. Shenoy P.A., Kuo A., Khan N., Gorham L., Nicholson J.R., Corradini L., Vetter I., Smith M.T. The Somatostatin Receptor-4 Agonist J-2156 Alleviates Mechanical Hypersen- sitivity in a Rat Model of Breast Cancer Induced Bone Pain. Front Pharmacol. 2018; 9: 495. https://doi.org/10.3389/ fphar.2018.00495. ECollection 2018.
  22. Melpomeni F., Nicolas G.P., Wild D. Somatostatin Receptor Antagonists for Imaging and Therapy. J. Nucl. Med. 2017; 58 (Suppl 2): 61–6. https://doi.org/10.2967/ jnumed.116.186783.
  23. Verhaak R.G., Hoadley K.A., Purdom E., Wang V., Qi Y., Wilkerson M.D., Miller C.R., Ding L., Golub T., Mesirov J.P., Alexe G., Lawrence M., O’Kelly M., Tamayo P., Weir B.A., Gabriel S., Winckler W., Gupta S., Jakkula L., Feiler H.S., Hodgson J.G., James C.D., Sarkaria J.N., Brennan C., Kahn A., Spellman P.T., Wilson R.K., Speed T.P., Gray J.W., Meyerson M., Getz G., Perou C.M., Hayes D.N. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnor- malities in PDGFRA, IDH1, EGFR, and NF1. Cancer Genome Atlas Research Network. Cancer Cell. 2010; 17 (1): 98–110. https:// doi.org/10.1016/j.ccr.2009.12.020.
  24. Sottoriva A., Spiteri I., Piccirillo S.G., Touloumis A., Collins V.P., Marioni J.C., Curtis C., Watts C., Tavaré S. Intratumor heterogeneity in hu- man glioblastoma reflects cancer evolution- ary dynamics. Proc Natl Acad Sci USA. 2013; 110 (10): 4009–14. https://doi.org/10.1073/ pnas.1219747110. Epub 2013 Feb 14.
  25. Folkman J. Tumor angiogenesis: thera- peutic implications. N. Engl. J. Med. 1971; 285 (21): 1182–6. https://doi.org/10.1056/ NEJM197111182852108
  26. Sharma A., Shiras A. Cancer stem cell-vascu- lar endothelial cell interactions in glioblas- toma. Biochem Biophys Res Commun. 2016; 473 (3): 688–92. https://doi.org/10.1016/j. bbrc.2015.12.022. Epub 2015 Dec 12.
  27. Plaks V., Kong N., Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015; 16 (3): 225–38. https://doi. org/10.1016/j.stem.2015.02.015.
  28. Brooks M.D., Sengupta R., Snyder S.C., Rubin J.B. Hitting Them Where They Live: Targeting the Glioblastoma Perivascular Stem Cell Niche. Curr Pathobiol Rep. 2013; 1 (2): 101–10. https://doi.org/10.1007/ s40139-013-0012-0.
  29. Codrici E., Enciu A.M., Popescu I.D., Mihai S., Tanase C. Glioma Stem Cells and Their Microenvironments: Providers of Challenging Therapeutic Targets. Stem Cells Int. 2016; 2016: 5728438. https://doi.org/10.1155/2016/5728438. Epub 2016 Feb 10.
  30. Osswald M., Jung E., Weil S., Blaes J., Solecki G., Kurz F.T., Heiland S., Huber P.E., Wick W., Winkler F. P08.31 A perivascular niche for progression and resistance in glio- blastoma. Neuro Oncol. 2016; 18 (Suppl 4): iv48. Published online 2016 Sep 21. https:// doi.org/10.1093/neuonc/now188.164
  31. Seano G. Targeting the perivascular niche in brain tumors. Curr Opin Oncol. 2018; 30 (1): 54–60. https://doi.org/10.1097/ CCO.0000000000000417.
  32. Lee S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016; 3 (3): 198–210. https://doi.org/10.1016/j. gendis.2016.04.007. eCollection 2016