ACTUALITY AND PERSPECTIVES FOR THE PERSONALIZED APPROACH TO THE ALTERATION IN FUNCTIONAL ACTIVITY OF THE IMMUNE SYSTEM BASED ON MICRONUTRIENTS

DOI: https://doi.org/10.29296/24999490-2020-04-01

V.V. Yurasov(1), A.R. Sadykov(1), I.V. Zolkina(2), N.R. Khasbiullina(1), P.B. Glagovskiy3, I.S. Mamedov(4), M.A. Paltsev(1, 5) 1-Scientific and Laboratory Complex «Chromolab», Nauchnyi pr., 20/2, Moscow, 117246, Russian Federation; 2-The Research and Clinical Institute for Pediatrics named after Academician Yuri Veltischev of the Nikolay Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow, 117437, Russian Federation; 3-Research Institute of Cerebrovascular Pathology and Stroke of the Nikolay Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow, 117997, Russian Federation; 4-Center for the implementation of innovative medical and pharmaceutical technologies of the Nikolay Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow, 117997, Russian Federation; 5-Center For Immunology and Molecular Biomedicine of the Faculty of Biology of Lomonosov Moscow State University, Leninskie gory 1/12, Moscow, 119991, Russian Federatio

The review article discusses the principles of a personalized approach to changing the functional activity of the immune system based on micronutrients. The activity of the immune cells has been demonstrated to depend on the level of supplied not only macro- but also micronutrients – vitamins and minerals. Given the special needs of the immune system for micronutrients, an assessment of their adequate level is an important step in the development of the principles of personalized medicine. It is promising to measure the level of micronutrients using metabolome technologies. The article considers, the role and importance for the immune system functionality of the following micronutrients: fat-soluble vitamins – A, D, E, K, water-soluble vitamins – B1, B2, B3, B5, B6, B9, B12, vitamin C and trace elements – selenium, zinc, copper, magnesium, and manganese. The validity of the administration of micronutrients should be based on the analysis of the individual profile of these substances in the particular patient. A similar approach that underlies personalized medicine will not only increase both the efficacy and safety of preventive medical measures but also reduce the cost of expensive procedures, applying to target groups only. When considered as the most important direction in the development of clinical medicine personalized medicine can significantly improve the quality and the results of the treatment.
Keywords: 
personalized medicine, metabolomics, micronutrients, vitamins, microelements, immune system

Список литературы: 
  1. Belushkina N.N., Chemezov A.S., Pal'tsev M.A. Personalizirovannaja meditsina: ot idei do vnedrenija v prakticheskoe zdravoohranenie. Molekuljarnaja meditsina. 2018; 16 (3): 9–15. https://doi.org/10.29296/24999490-2018-03-02.
  2. [Belushkina N.N., Chemezov A.S., Paltsev M.A. Personalized medicine: from idea to implementation in practical health care. Molekulyarnaya meditsina. 2018; 16 (3): 9–15. https://doi.org/10.29296/24999490-2018-03-02 (in Russian)]
  3. Pal'tsev M.A., Chemezov A.S., Lin'kova N.S., Drobintseva A.O, Poljakova V.O., Belushkina N.N., Kvetnoj I.M. Omiksnye tehnologii: rol' i znachenie dlja razvitija personalizirovannoj meditsiny. Molekuljarnaja meditsina. 2019; 17 (4): 3–8. https://doi.org/10.29296/24999490-2019-04-01.
  4. [Paltsev M.A., Chemezov A.S., Linkova N.S., Drobintseva A.O., Polyakova V.O., Belushkina N.N., Kvetnoy I.M. Omics technology: the role and significance for personalized medicine. Molekulyarnaya meditsina. 2019; 17 (4): 3–8. https://doi.org/10.29296/24999490-2019-04-01 (in Russian)]
  5. Mora J.R., Iwata M., von Andrian U.H. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol. 2008; 8 (9): 685–98. https://doi.org/10.1038/nri2378.
  6. Monastra G., De Grazia S., De Luca L., Vittorio S., Unfer V. Vitamin D: a steroid hormone with progesterone-like activity. Eur Rev Med Pharmacol Sci. 2018; 22 (8): 2502–12. https://doi.org/10.26355/eurrev_201804_14845.
  7. Mohty M., S. Morbelli D., Isnardon D., Sainty C. Arnoulet B., Gaugler D. All-trans retinoic acid skews monocyte differentiation into interleukin-12-secreting dendritic-like cells. Br. J. Haematol. 2003; 122: 829–36. https://doi.org/10.1046/j.1365-2141.2003.04489.x.
  8. Motomura K., M. Ohata M. Satre, H. Tsukamoto. Destabilization of TNF-alpha mRNA by retinoic acid in hepatic macrophages: implications for alcoholic liver disease. Am. J. Physiol. Endocrinol. Metab. 2001; 281: 420–9. https://doi.org/10.1152/ajpendo.2001.281.3.E420.
  9. Bhaskaram P. Micronutrient Malnutrition, Infection, and Immunity: an Overview. Nutrition Reviews. 2002; 60 (5): 40–5. https://doi.org/10.1301/00296640260130722.
  10. Pino-Lagos K., Benson M.J., Noelle R.J. Retinoic Acid in the Immune System. Ann. N. York Acad. Sc. 2008; 1143 (1): 170–87. https://doi.org/10.1196/annals.1443.017.
  11. Kunisawa J., Kiyono H. Vitamin-mediated regulation of intestinal immunity. Front Immunol. 2013; 4: 189. https://doi.org/10.3389/fimmu.2013.00189.
  12. VanEtten E., Mathieu C. Immunoregulation by 1,25-dihydroxvitamin D3: basic concepts. J. Steroid Biochem. 2005; 97: 93–101. https://doi.org/10.1016/j.jsbmb.2005.06.002.
  13. Beard J.A., Bearden A., Strike R. Vitamin D and the anti-viral state. J Clin Virol. 2011; 50: 194–200. https://doi.org/10.1016/j.jcv.2010.12.006.
  14. Hansdottir S., Monick M.M., Hinde S.L., Lovan N., Look D.C., Hunninghake G.W. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J. Immunol. 2008; 181: 7090–9. https://doi.org/10.4049/jimmunol.181.10.7090.
  15. Yamshchikov A., Desai N., Blumberg H., Ziegler T., Tangpricha V. Vitamin D for Treatment and Prevention of Infectious Diseases: A Systematic Review of Randomized Controlled Trials. Endocr Pract. 2009; 15 (5): 438–49. https://doi.org/10.4158/EP09101.ORR.
  16. Pender M.P. CD8+ T-Cell Deficiency, Epstein-Barr Virus Infection, Vitamin D Deficiency, and Steps to Autoimmunity: A Unifying Hypothesis. Autoimmune Dis. 2012; 189096: 1–16. https://doi.org/10.1155/2012/189096.
  17. 15. Iruretagoyena M., Hirigoyen D., Naves R, Burgos PI. Immune Response Modulation by Vitamin D: Role in Systemic Lupus Erythematosus. Front Immunol. 2015; 6: 513. https://doi.org/10.3389/fimmu.2015.00513.
  18. 16. Wang X., Quinn P.J. The location and function of vitamin E in membranes (Review). Molecular Membrane Biology. 2000; 17 (3): 143–56. https://doi.org/10.1080/09687680010000311.
  19. 17. Rizvi S., Raza S.T., Ahmed F., Ahmad A., Abbas S., Mahdi F. The role of vitamin e in human health and some diseases. Sultan Qaboos Univ Med J. 2014; 14 (2): 157–65.
  20. 18. Rall L.C., Meydani S.N. Vitamin B6 and immune competence. Nutr Rev. 1993; 51: 217–25. https://doi.org/10.1111/j.1753-4887.1993.tb03109.x.
  21. 19. Han S.N., Meydani M., Wu D. et al. Effect of longterm dietary antioxidant supplementation on influenza virus infection. J. Gerontol. 2000; 55A: 496–503. https://doi.org/10.1093/gerona/55.10.b496.
  22. 20. Ohsaki Y., Shirakawa H., Hiwatashi K., Furukawa Y., Mizutani T., Komai M. Vitamin K suppresses lipopolysaccharide-induced inflammation in the rat. Biosci Biotechnol Biochem. 2006; 70 (4): 926–32. https://doi.org/10.1016/j.jnutbio.2009.09.011.
  23. 21. Checker R., Sharma D., Sandur S.K., Khan N.M., Patwardhan R.S., Kohli V., et al. Vitamin K3 suppressed inflammatory and immune responses in a redoxdependent manner. Free Radic Res. 2011; 45 (8): 975–85. https://doi.org/10.3109/10715762.2011.585647.
  24. 22. Hatanaka H., Ishizawa H., Nakamura Y., Tadokoro H., Tanaka S., Onda K., et al. Effects of vitamin K 3 and K 5 on proliferation, cytokine production, and regulatory T cell-frequency in human peripheral blood mononuclear cells. Life Sci. 2014; 99 (1): 61–8. https://doi.org/10.1016/j.lfs.2014.01.068.
  25. Spinas E., Saggini A., Kritas S.K., Cerulli G., Caraffa A. et al. Crosstalk between vitamin B and immunity. J. Biol. Regul Homeost Agents. 2015; 29 (2): 283–8.
  26. Si Y., Zhang Y., Zhao J., Guo S., Zhai L., Yao S., … Qin, S. Niacin Inhibits Vascular Inflammation via Downregulating Nuclear Transcription Factor-κB Signaling Pathway. Mediators of Inflammation. 2014; 1 (12). https://doi.org/10.1155/2014/263786
  27. Mikkelsen K., Apostolopoulos V. Vitamin B1, B2, B3, B5, and B6 and the Immune System. In: Mahmoudi M., Rezaei N. (eds) Nutrition and Immunity. Springer, Cham. 2019; 115–25.
  28. Gay R., Meydani S. N. The Effects of Vitamin E, Vitamin B6, and Vitamin B12 on Immune Function. Nutrition in Clinical Care. 2001; 4(4): 188–198. doi.org/10.1046/j.1523-5408.2001.00142.x.
  29. Simanjuntak Y., Ko H.-Y., Lee Y.-L., Yu G.-Y., Lin Y.-L. Preventive effects of folic acid on Zika virus-associated poor pregnancy outcomes in immunocompromised mice. PLOS Pathogens. 2020; 16 (5): e1008521. https://doi.org/10.1371/journal.ppat.1008521.
  30. Fata F.T., Herzlich B.C., Schiffman G., Ast A.L. Impaired antibody response to pneumococcal polysaccharide in elderly patients with low serum vitamin B12 levels. Ann Intern Med. 1996; 124: 299–304. https://doi.org/10.7326/0003-4819-124-3-199602010-00003.
  31. Carr A.C., Maggini S. Vitamin C and Immune Function. Nutrients. 2017; 9: 1211. https://doi.org/10.3390/nu9111211.
  32. Amir A.B., Ghobadi S. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Sci. 2016; 146: 163–73. https://doi.org/10.1016/j.lfs.2016.01.014.
  33. Rayman M.P. The importance of selenium to human health. Lancet. 2000; 356 (9225): 233–41. https://doi.org/10.1016/S0140-6736(00)02490-9.
  34. Baum M.K., Shor-Posner G., Lai S., Campa A.M., Trapido E. High risk of HIV-related mortality is associated with selenium deficiency. J Acquir Immune Defic Syndr. 1997; 15, 370–4. https://doi.org/10.1097/00042560-199708150-00007
  35. El-Bayoumi K. The protective role of selenium on genetic damage and on cancer. Mutat.Res. 2001; 475, 123–39. https://doi.org/10.1016/S0027-5107(01)00075-6.
  36. Jiang C., Jiang W., Ip C., Ganther H., Lu J. Selenium-induced inhibition of angiogenesis in mammary cancer at chemopreventive levels of intake. Mol. Carcinogen. 1999; 26: 213–25. https://doi.org/10.1002/(sici)1098-2744(199912)26:4<213::aid-mc1>3.0.co;2-z.
  37. Beck M.A. Selenium and Vitamin E Status: Impact on Viral Pathogenicity. Nutr. 2007; 137: 1338–40. https://doi.org/10.1093/jn/137.5.1338.
  38. Beck M.A., Levander O.A., Handy J. Selenium Deficiency and Viral Infection. J. Nutr. 2003; 133 (5): 1463–7. https://doi.org/10.1093/jn/133.5.1463S.
  39. Jaspers I., Zhang W., Brighton L. E., Carson J. L., Styblo M., Beck M. A. Selenium deficiency alters epithelial cell morphology and responses to influenza. Free Radic Biol Med. 2007; 42 (12): 1826–37. https://doi.org/10.1016/j.freeradbiomed.2007.03.017.
  40. Ferenčik M., Ebringer, L. Modulatory effects of selenium and zinc on the immune system. Folia Microbiologica. 2003; 48 (3): 417–26. https://doi.org/10.1007/BF02931378.
  41. Terpilowska S., Siwicki A.K. The role of selected microelements: selenium, zinc, chromium and iron in immune system. Central European Journal of Immunology. 2011; 36 (4): 303–7.
  42. World Health Organization. Zinc. In Trace Elements in Human Nutrition and Health. Geneva: WHO, 1996: 72–104.
  43. Hojyo S., Fukada T. Roles of Zinc Signaling in the Immune System. J. Immunol Res. 2016; 2016: 6762343. https://doi.org/10.1155/2016/6762343.
  44. Gammoh N.Z., Rink L. Zinc in Infection and Inflammation. Nutrients. 2017; 9 (6): 624. https://doi.org/10.3390/nu9060624.
  45. Jaiser S.R., Winston G.P. Copper deficiency myelopathy. J. Neurol. 2010; 257: 869–81. https://doi.org/10.1007/s00415-010-5511-x.
  46. Bonham M., O’Connor J.M., Hannigan B.M., Strain J.J. The immune system as aphysiological indicator of marginal copper status? Br. J. Nutr. 2002; 87 (5): 393–403. https://doi.org/10.1079/BJNBJN2002558.
  47. Uriu-Adams J.Y., Keen C.L. Copper, oxidative stress, and human health. Mol Aspects Med. 2005; 26 (4–5): 268–98. https://doi.org/10.1016/j.mam.2005.07.015.
  48. Turnlund J.R., Jacob R.A., Keen C.L., Strain J.J., Kelley D.S., Domek J.M. Long-term high copper intake: effects on indexes of copper status, antioxidant status, and immune function in young men. Am. J. Clin. Nutr. 2004; 79 (6): 1037–44. https://doi.org/10.1093/ajcn/79.6.1037.
  49. Borkow G., Gabbay J. Copper, An Ancient Remedy Returning to Fight Microbial, Fungal and Viral Infections. Current Chemical Biology. 2009; 3: 272–8. https://doi.org/10.2174/187231309789054887.
  50. Gunter T. The biochemical function of Mg2+ in insulin secretion, insulin signal transduction and insulin resistance. Magnes Res. 2010; 23 (1): 5–18. https://doi.org/10.1684/mrh.2009.0195.
  51. Libako P., Nowacki W., Rock E., Rayssiguier Y., Mazur A. Phagocyte priming by low magnesium status: input to the enhanced inflammatory and oxidative stress responses. Magnes Res. 2010; 23 (1): 1–4. https://doi.org/10.1684/mrh.2009.0201.
  52. Sugimoto J., Romani A.M., Valentin-Torres A.M., Luciano A.A., Ramirez Kitchen C.M., Funderburg N., Mesiano S., Bernstein H.B. Magnesium Decreases Inflammatory Cytokine Production: A Novel Innate Immunomodulatory Mechanism. J. Immunol. 2012; 188 (12): 6338–46. https://doi.org/10.4049/jimmunol.1101765.
  53. Corbin B.D., Seeley E.H., Raab A., Feldmann J., Miller M.R. et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science. 2008; 319: 962–5. https://doi.org/10.1126/science.1152449.
  54. Aschner J.L., Aschner M. Nutritional aspects of manganese homeostasis. Mol. Aspects Med. 2005; 26: 353–62. https://doi.org/10.1016/j.mam.2005.07.003.
  55. Kehl-Fie T.E., Skaar E.P. Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol. 2010; 14 (2): 218–24. https://doi.org/10.1016/j.cbpa.2009.11.008.
  56. Gombart A.F., Pierre A., Maggini S. A Review of Micronutrients and the Immune System–Working in Harmony to Reduce the Risk of Infection. Nutrients. 2020; 12 (236). https://doi.org/10.3390/nu12010236.