RELATIONSHIP BETWEEN OXIDATIVE PROTEIN MODIFICATION AND THE ACTIVITY OF LYSOSOMAL CYSTEINE PROTEINASES IN BLOOD PLASMA AND LEUKOCYTES IN ALZHEIMER’S DISEASE

DOI: https://doi.org/10.29296/24999490-2020-06-07

M.G. Engalycheva, N.V. Korotkova, D.S. Petrov, V.A. Sokolov, A.N. Ryabkov Ryazan State Medical University, Vysokovoltnaya str., 9, Ryazan, 390026, Russian Federation E-mail: [email protected]

Introduction. Revealing the relationship between the severity of oxidative stress and the activity of cathepsins in tissues (plasma and blood cells) readily available for the diagnosis of Alzheimer’s disease can be useful for understanding the pathogenesis of the disease, early diagnosis, and monitoring the course of pathology. The aim of the study: identification of correlations between the level of oxidative modification of proteins and the activity of lysosomal cysteine proteinases in plasma and leukocytes in patients with Alzheimer’s disease in comparison with similar indices in patients without signs of neurodegeneration. Methods. Spectrophotometric determination of the level of carbonyl derivatives of proteins, spectrofluorometric determination of the activity of lysosomal cysteine cathepsins, analysis of correlations between indices in plasma and leukocytes (polymorphonuclear and mononuclear) both in patients with Alzheimer’s disease, and patients without signs of neurodegeneration. Results. In leukocytes in Alzheimer’s disease, a moderate negative correlation was found between the activity of cathepsin H and the level of products of oxidative protein modification. In patients with vascular dementia, a pronounced negative correlation between cathepsin B and L in polymorphonuclear leukocytes was found. A similar trend was observed in the comparison group (patients without signs of dementia and neurodegeneration). Also, in this group, a moderate positive correlation was found between the activity of cathepsin L and the level of markers of oxidative stress in blood plasma. Based on the results were made the following conclusions: • Between the activity of cathepsin H and the level of oxidative modification of proteins, a moderate negative correlation was revealed in leukocytes of patients with Alzheimer’s disease. • The activity of cathepsins B and L negatively correlates with the level of oxidative modification of proteins in polymorphonuclear leukocytes of patients with vascular dementia and cases ts without signs dementia and neurodegeneration. • The activity of cathepsin L is in direct proportion to the level of oxidative modification of the protein in the blood plasma of patients without signs of dementia and neurodegeneration.
Keywords: 
oxidative stress, lysosomal cysteine proteases, cathepsins B, L, H, Alzheimer’s disease, neurodegeneration

Список литературы: 
  1. Hook V., Yoon M., Mosier C., Ito G., Podvin S., Head B.P., Rissman R., O’Donoghue A.J., Hook G. Cathepsin B in neurodegeneration of Alzheimer’s disease, traumatic brain injury, and related brain disorders. Biochim Biophys Acta Proteins Proteom. 2020; 1868 (8): 1404–28. https://doi.org/10.1016/j.bbapap.2020.140428.
  2. Medoro A., Bartollino S., Mignogna D., Marziliano N., Porcile C., Nizzari M., Florio T., Pagano A., Raimo G., Intrieri M., Russo C. Proteases Upregulation in Sporadic Alzheimer’s Disease Brain. J. Alzheimers Dis. 2019; 68 (3): 931–8. https://doi.org/10.3233/JAD-181284.
  3. Cermak S., Kosicek M., Mladenovic-Djordjevic A. Loss of cathepsin B and L leads to lysosomal dysfunction, NPC-like cholesterol sequestration and accumulation of the key Alzheimer’s proteins. PLOS ONE. 2016; 30: 1–17. https://doi.org/10.1371/journal.pone.0167428
  4. Snir J.A., Suchy M., Bindseil G.A., Kovacs M., Chronik B.A., Hudson R.H.E., Pasternak S.H., Bartha R. An Aspartyl Cathepsin Targeted PET Agent: Application in an Alzheimer’s Disease Mouse Model. J. Alzheimers Dis. 2018; 61 (3): 1241–52. https://doi.org/10.3233/JAD-170115.
  5. Tönnies E., Trushina E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimers Dis. 2017; 57 (4): 1105–21. https://doi.org/10.3233/JAD-161088.
  6. Wang X., Wang W., Li L., Perry G., Lee H.G., Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta. 2014; 1842 (8): 1240–7. https://doi.org/10.1016/j.bbadis.2013.10,015.
  7. Fomina M.A., Abalenihina Ju.V. Sposob kompleksnoj otsenki soderzhanija produktov okislitel'noj modifikatsii belkov v tkanjah i biologicheskih zhidkostjah. Metodicheskie rekomendatsii, Rjazan'. 2014; 61. [Fomina M.A., Abalenikhina Yu.V. A method for a comprehensive assessment of the content of products of oxidative modification of proteins in tissues and biological fluids. Ryazan. 2014; 61 (in Russian)]
  8. Kalinin R.E., Abalenihina Ju.V., Pshennikov As., Suchkov I.A., Isakov S.A. Vzaimosvjaz' okislitel'nogo karbonilirovanija belkov i lizosomal'nogo proteoliza plazmy v uslovijah eksperimental'nogo modelirovanija ishemii i ishemii-reperfuzii. Nauka molodyh – Eruditio Juvenium. 2017; 3: 338–51. [Kalinin R.E., Abalenikhina Yu.V., Pshennikov As., Suchkov I.A., Isakov S.A. Relationship between oxidative protein carbonylation and lysosomal plasma proteolysis under conditions of experimental modeling of ischemia and ischemia-reperfusion. Nauka molodyh (Eruditio juvenium). 2017; 3: 338–51 (in Russian)]
  9. Podunaj Ju.A., Zalevskaja I.N., Rudneva I.I. Vozrastnaja dinamika aktivnosti katepsinov i soderzhanija srednemolekuljarnyh peptidov v myshtsah morskogo ersha. Uchenye zapiski Tavricheskogo natsional'nogo universiteta im. V.I. Vernadskogo. 2009; 22 (4): 128–34. [Podunay Yu.A., Zalevskaya I.N., Rudneva I.I. Age-related dynamics of cathepsin activity and content of medium molecular weight peptides in the muscles of the sea ruff. Uchenye zapiski Tavricheskogo nacional’nogo universiteta im. V.I. Vernadskogo. 2009; 22 (4): 128–34 (in Russian)]
  10. Pupyshev A.B. Permeabilizatsija lizosomal'nyh membran kak apoptogennyj faktor. Tsitologija. 2011; 53 (4): 313–24. [Pupyshev A.B. Permeabilization of lysosomal membranes as an apoptogenic factor. Citologiya. 2011; 53 (4): 313–24 (in Russian)]
  11. Carija A., Ventura S., Navarro S. Evaluation of the Impact of Protein Aggregation on Cellular Oxidative Stress in Yeast. J Vis Exp. 2018; 23 (136): 57470. https://doi.org/10.3791/57470.
  12. . Karpischenko A.I. Meditsinskie laboratornye tehnologii: rukovodstvo po klinicheskoj laboratornoj diagnostike pod. red. A.I. Karpischenko. M.: GEOTAR-Media, 2013; 2: 755–62. [Karpishchenko A.I. Medical laboratory technology: a guide to clinical laboratory diagnostics under. ed. A.I. Karpishchenko. M.: GEOTAR-Media, 2013; 2: 755–62 (in Russian)]
  13. Barrett A.J., Kirschke N. Cathepsin B, cathepsin H, cathepsinL. Methods in Enzymol. 1981; 80: 535–61.
  14. Kalinin R.E., Pshennikov A.S., Abalenihina Ju.V., Suchkov I.A., Mzhavanadze N.D., Isakov S.A. Katepsiny kak vozmozhnyj sposob adaptatsii sosudistoj stenki k okislitel'nomu stressu v uslovijah ishemii i reperfuzii. Meditsinskij vestnik Severnogo Kavkaza. 2017; 2: 191–4. [Kalinin R.E., Pshennikov A.S., Abalenikhina Yu.V., Suchkov I.A., Mzhavanadze N.D., Isakov S.A. Cathepsins as a possible way of adaptation of the vascular wall to oxidative stress under conditions of ischemia and reperfusion. Medicinskij vestnik Severnogo Kavkaza. 2017; 2: 191–4 (in Russian)]
  15. Muravleva L.E., Molotov-Luchanskij V.B., Kljuev D.A., Bakenova R.A., Kultanov B.Zh., Tankibaeva N.A., Kojkov V.V., Omarova G.A. Okislitel'naja modifikatsija belkov: problemy i perspektivy issledovanija. Sovremennye problemy nauki i obrazovanija. 2010; 1: 74–8. [Muravleva L.E., Molotov-Luchansky V.B., Klyuev D.A., Bakenova R.A., Kultanov B.Zh., Tankibaeva N.A., Koikov V.V., Omarova G.A. Oxidative modification of proteins: problems and research prospects. Sovremennye problemy nauki i obrazovaniya. 2010; 1: 74–8 (in Russian)]
  16. Hao Y., Purtha W., Cortesio C., Rui H., Gu Y., Chen H., Sickmier E.A., Manzanillo P., Huang X. Crystal structures of human procathepsin H. PLoS One. 2018; 13 (7): e0200374. https://doi.org/10.1371/journal.pone.0200374.
  17. Tamhane T., Lllukkumbura R., Lu S., Maelandsmo G.M., Haugen M.H., Brix K. Nuclear cathepsin L activity is required for cell cycle progression of colorectal carcinoma cells. Biochimie. 2016; 122: 208–18. https://doi.org/10.1016/j.biochi.2015.09.003.
  18. Dubinina E.E., Schedrina L.V., Neznanov N.G., Zalutskaja N.M., Zaharchenko D.V. Okislitel'nyj stress i ego vlijanie na funktsional'nuju aktivnost' kletok pri bolezni Al'tsgejmera. Biomeditsinskaja himija. 2015; 61 (1): 57–69. [Dubinina E.E., Shchedrina L.V., Neznanov N.G., Zalutskaya N.M., Zakharchenko D.V. Oxidative stress and its effect on the functional activity of cells in Alzheimer’s disease. Biomedicinskaya himiya. 2015; 61 (1): 57–69 (in Russian)]
  19. Baskin-Bey E.S., Canbay A., Bronk S.F., Werneburg N., Guicciardi M.E., Nyberg S.L., Gores G. J. Cathepsin B inactivation attenuates hepatocyte apoptosis and liver damage in steatotic livers after cold ischemia-warm reperfusion injury. Am. J. of Physiology. 2005; 288 (2): 396–402. https://doi.org/org/10.1152/ajpgi.00316.2004
  20. Hishita T., Tada-Oikawa S., Tohyama K., Miura Y., Nishihara T., Tohyama Y., Yoshida Y., Uchiyama T., Kawanishi S. Caspase-3 activation by lysosomal enzymes in cytochrome c-independent apoptosis in myelodysplastic syndrome-derived cell line P39. Cancer Res. 2001; 61 (7): 2878–84. PMID: 11306462.