KINETIC PARAMETERS OF THE CHANGE OF OPTICAL PROPERTIES OF THE GINGIVA UNDER IMMERSION IN GLYCEROL: EX VIVO RESEARCH

DOI: https://doi.org/10.29296/24999490-2021-03-07

A.A. Selifonov(1, 2), V.V. Tuchin(1, 3–5) 1-Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russian Federation; 2-Saratov State Medical University, Kazachaya str., 112 B, Saratov, 410012, Russian Federation; 3-Bach Institute of Biochemistry, Research Center of Biotechnology of the RAS, Leninsky prospect, 33, build. 2, Moscow, 119071, Russian Federation; 4-Tomsk State University, Lenin Avenu, 36, Tomsk, 634050, Russian Federation; 5-Institute of Precision Mechanics and Control of the RAS, Rabochaya str., 24, Saratov, 410028, Russian Federation Е-mail: [email protected]

Introduction. The oral cavity is the beginning of the human digestive system and the presence of pathological changes in it: a shift in the dynamic balance, composition, and types of microorganisms inhabiting the oral cavity; color change; the appearance of pain and discomfort; etc., all this may indicate pathological changes in other body systems. The accuracy and safety of non-invasive diagnostics at the cellular and subcellular levels is ensured by modern optical systems. However, optical radiation has difficulty in transporting probe radiation deep into biological tissues due to significant scattering of radiation in the visible and near-infrared spectral ranges. It is possible to increase the penetration of radiation using the method of optical clearing. The aim of the study. To evaluate the effectiveness of optical enlightenment of tissues of attached pig gingiva after full immersion in 87.5% glycerol, and also to determine its diffusion coefficient and degree of tortuosity (porosity) of pig gingival tissue. Methods. The diffuse reflection and total transmission spectra were recorded on a Shimadzu UV-2550 spectrophotometer with an integrating sphere. The completion of the immersion process was evaluated by stopping the change in the diffuse reflection spectra. To assess the kinetics of the optical clearing process, the diffusion coefficient of glycerol into the gingival tissue was calculated using the free diffusion model. The effectiveness of «optical clearing» was evaluated using experimental data on the spectra of the complete transmission. Results. On average, the ex-vivo diffusion coefficient of glycerol in pig gingival tissue was (3.2±0.7)•10-6 cm2/s. The tortuosity (porosity) for the layer of the own gingival plate is estimated as S≈3.4. Highest efficiency optical clearing is achieved at a wavelength of 200 nm and amounts to 1860%, with sufficiently small absolute transmittance values. Conclusion. Three dynamic transparency windows have been identified in the UV range of the spectrum, with gingival immersion in 87.5% glycerol, from 200 to 250 nm, from 250 to 300 nm and from 300 to 400 nm. Тhis can be used to develop non-invasive optical diagnostic and therapeutic methods and needs further study.
Keywords: 
optical clearing, gingiva, diffusion coefficient, glycerin, diffuse reflection spectroscopy

Список литературы: 
  1. Borovskij F.V., Mashkillejson A.L. Hronicheskij retsidivirujuschij aftoznyj stomatit. Zabolevanija slizistoj obolochki polosti rta i gub. M.: Medpress, 2011; 235. [Borovskij F.V., Maškillejson A.L. Hroničeskij recidiviruûŝij aftoznyj stomatit. Zabolevaniâ slizistoj oboločki polosti rta i gub. M.: Medpress, 2011; 235 (in Russian)]
  2. Tuchin V.V. Optika biologicheskih tkanej. Metody rassejanija sveta v meditsinskoj diagnostike, 2-e izdanie. Fizmatlit; 2012; 811. [Tuchin V.V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics. 3rd edition. Bellingham. WA: SPIE Press; 2015; 866].
  3. Shi L., Alfano R. R. Deep Imaging in Tissue and Biomedical Materials: Using Linear and Nonlinear Optical Methods, Taylor & Francis Group, Pan Stanford Publishing Pte. Ltd. Singapore. 2017; 230.
  4. Bolton F.J., Bernat A.S., Bar-Am K., Levitz D. Jacques S. Portable, low-cost multispectral imaging system: design, development, validation, and utilization. J. Biomed. Opt. 2018; 23 (12): 121612. https://doi.org/10.1117/1.JBO.23.12.121612.
  5. Valdes P., Jacobs V., Wilson B., Leblond F. System and methods for wide-field quantitative fluorescence imaging during neurosurgery. Opt. Lett. 2013; 38 (15): 2786–8. https://doi.org/10.1364/OL.38.002786.
  6. Skandarajah A., Sunny S.P., Gurpur P., Reber C.D., D’Ambrosio M.V., Raghavan N., James B. L., Ramanjinappa R.D., Suresh A., Kandasarma U., Birur P., Kumar V.V., Galmeanu H.C., Itu A.M., Modiga-Arsu M., Rausch S., Sramek M., Kollegal M., Paladini G., Kuriakose M., Ladic L., Koch F., Fletcher D. Mobile microscopy as a screening tool for oral cancer in India: A pilot study. PLoS One. 2017; 12 (11): e0188440.
  7. Patil A., Unnikrishnan V.K., Ongole R., Pai K.M., Kartha V.B., Chidangil S. Non-invasive in vivo screening of oral malignancy using laser-induced fluorescence based system. Sovremennye tehnologii v medicine. 2018; 10 (1): 15–26. https://doi.org/10.17691/stm2018.10.1.02.
  8. Shkarednaya O.V., Goryacheva T.P., Chunikhin A.A., Bazikyan E.A., Gazhva S.I. Optimizing the Early Diagnosis of Oral Mucosal Pathologies CTM. 2017; 9 (3): 119–24. https://doi.org/10.17691/stm2017.9.3.16.
  9. Bulgakova N.N., Volkov E.A., Pozdnjakova T.I. Autofljuorestsentnaja stomatoskopija kak metod onkoskrininga zabolevanij slizistoj obolochki rta. Rossijskij stomatologicheskij zhurnal. 2015; 19 (1): 27–30. [Bulgakova N.N., Volkov E.A., Pozdnyakova T.I. Autofluorescent somatoscope as a method of oncoscience diseases of the oral mucosa. Rossiyskiy stomatologicheskiy zhurnal. 2015; 19 (1): 27–30 (in Russian)]
  10. Baumann B. Polarization sensitive optical coherence tomography: a review of technology and applications. Appl. Sci. 2017; 7: 47–54. https://doi.org/10.3390/app7050474.
  11. Le N. M., Song Sh., Zhou H., Xu J., Li Y., Sung Ch., Sadr A., Chung K.-H., Subhash H.M., Kilpatrick L., Wang R.K. A noninvasive imaging and measurement using optical coherence tomography angiography for the assessment of gingiva: An in vivo study. J. Biophotonics. 2018; 11: e201800242. https://doi.org/10.1002/jbio.201800242.
  12. Wang J., Zheng W., Lin K., Huang Zh. Development of a hybrid Raman spectroscopy and optical coherence tomography technique for real-time in vivo tissue measurements. Opt. Lett. 2016; 41 (13): 3045–8. https://doi.org/10.1364/OL.41.003045.
  13. Kang H., Darling C. L., Fried D. Use of an optical clearing agent to enhance the visibility of subsurface structures and lesions from tooth occlusal surfaces. J. Biomed. Opt. 2016; 21 (8): 081206. https://doi.org/10.1117/1.JBO.21.8.081206.
  14. Oliveira L.M.C., Tuchin V.V. The Optical Clearing Method – A New Tool for Clinical Practice and biomedical Engineering, Cham, Switzerland: Springer, 2019; 456.
  15. D'jakonov I.A. Glitserin. Himicheskaja entsiklopedija: v 5 t. M.: Sovetskaja entsiklopedija, 1988; (1): 585–623. [D’âkonov I. A. Glicerin. Himičeskaâ ènciklopediâ: v 5 t. M.: Sovetskaâ ènciklopediâ, 1988; (1): 585–623 (in Russian)]
  16. Selifonov A.A., Tuchin V.V. Determination of the kinetic parameters of glycerol diffusion in the gingival and dentinal tissue of a human tooth using optical method: in vitro studies. Optical and Quant. Electr. 2020; 52: 123-1-10. https://doi.org/10.1134/S0006350918060222.
  17. Li K., Yang Z., Liang W., Shang J., Liang Y., Wan S. Low-cost, ultracompact handheld optical coherence tomography probe for in vivo oral maxillofacial tissue imaging. J. Biomed. Opt. 2020; 25 (4): 046003-1-13. https://doi.org/10.1117/1.JBO.25.4.046003.
  18. Genina E.A., Bashkatov A.N., Tuchin V.V. Optical clearing of human dura mater by glucose solutions. JBPE. 2017; 3 (1): 010309. https://doi.org/10.18287/JBPE17.03.010309.
  19. Schwindt D.A., Wilhelm K.P., Maibach H. I. Water diffusion characteristics of human stratum corneum at different anatomical sites in vivo. J. Invest. Dermatol. 1998; 111 (3): 385–9. https://doi.org/10.1046/j.1523-1747.1998.00321.x.
  20. Mériaux S., Conti A., Larrat B. Assessing Diffusion in the Extra-Cellular Space of Brain Tissue by Dynamic MRI Mapping of Contrast Agent Concentrations. Front. Phys. 2018; 6: 38-1-8. https://doi.org/10.3389/fphy.2018.00038.