Development of 3d structures for corneal fibroblasts

DOI: https://doi.org/10.29296/24999490-2021-05-08

A.P. Lykov(1), M.A. Surovtseva(1), K.Y. Krasner(2), I.I. Kim(1), N.A. Bondarenko(1), A.N. Trunov(2), V.V. Chernykh(2), O.V. Poveshchenko(1), 1-Research Institute of Clinical and Experimental Lymphology – Branch of Federal Research Center Institute of Cytology and Genetics of SB RAS, Timakov str., 2, Novosibirsk, 630060, Russian Federation; 2-Novosibirsk Branch of S. Fyodorov Eye Microsurgery Federal State Institution, Kolkhidskaya str. 10, Novosibirsk, 630071, Russian Federation E-mail: [email protected].

Introduction. Advances in biology and medicine in particular in the field of cell technologies allow us to test eye stem cells as an alternative to surgical treatment of corneal pathology. An option to increase the resistance of stem cells to adverse microenvironment factors in the pathological focus can be the creation of an analog of a 3D model of the stem cell niche. The aim of the study: to study in the experiment the ability of a combination of polyethylene glycol with extracellular matrix and platelet lysate to hold corneal fibroblasts inside. Material and Methods. The biocompatibility of corneal structures and fibroblasts isolated from corneal lenticules and the viscosity of structures in vitro were evaluated. Results. Within 3–4 weeks, it is possible to grow up to 2–3•106 cells from corneal lenticules, which morphologically had a dendritic shape, and phenotypically carried markers of mesenchymal stem cells/fibroblasts on their surface. The study examined the biocompatibility of structures made of polyethylene glycol-4000 (PEG-4000), methylcellulose (MC), platelet lysate (PL), calf blood derivatives and corneal fibroblasts. It was shown that corneal fibroblasts proliferated in the presence of most of the materials used to create structures, with the exception of solcoseryl preparations in the form of gel. Structures based on PEG-4000, MC and PL kept corneal fibroblasts inside themselves and did not interfere with cell growth. Conclusion. The results obtained indicate the possibility of isolating corneal fibroblasts from a small volume of corneal material, as well as the possibility of using structures based on PEG-4000, MC and PL as a cell carrier.
Keywords: 
polyethylene glycol, methylcellulose, lysate of platelets, calf blood derivatives, corneal lenticule, corneal fibroblasts

Список литературы: 
  1. Mathews P.M., Lindsley K., Aldave A.J., Akpek E.K. Etiology of global corneal blindness and current practices of corneal transplantation: a focused review. Cornea. 2018; 37 (9): 1198–203. https://doi.org/10.1097/ICO.0000000000001666
  2. Bremond-Gignac D., Copin H., Benkhalifa M. Corneal epithelial stem cells for corneal injury. Expert Opin Biol Ther. 2018; 18 (9): 997–1003. https://doi.org/10.1080/14712598.2018.1508443
  3. Wadhawa H., Ismail S., McGhee J.J., Werf B.V., Sherwin T. Sphere-forming corneal cells repopulate dystrophic keratoconic stroma: implications for potential therapy. World J. Stem Cells. 2020; 12 (1): 35–54. https://doi.org/10.4252/wjsc.v12.i1.35
  4. Zhou Y., Chen Y., Wang S., Qin F., Wang L. MSCs helped reduce scarrinh in the cornea after fungal infection when combined with anti-fungal treatment. BMC Ophthalmol. 2019; 19 (1): 226. https://doi.org/10.1186/s12886-019-1235-6
  5. Franchi F., Ramaswamy V., Olthoff M., Peterson K.M., Paulmurugan R., Rodriguez-Porcel M. Myocardial microenvironment modulates the biology of transplanted mesenchymal stem cells. Mol. Imaging Biol. 2020; 22 (4): 948–57. https://doi.org/10.1007/s11307-019-01470-y
  6. Khodayari S., Khodayari H., Amiri A.Z., Eslami M., Farhud D., Hescheler J., Nayernia K. Inflammatory microenvironment of acute myocardial infarction prevents regeneration of heart with stem cells therapy. Cell Phisiol Biochem. 2019; 53 (5): 887–909. https://doi.org/10.33594/000000180
  7. Boutin M.E., Hampton C., Quinn R., Ferrer M., Song M.J. 3D engineering of ocular tissues for disease modeling and drug testing. Adv Exp. Med. Biol. 2019; 1186: 171–93. https://doi.org/10.1007/978-3-030-28471-8_7
  8. Becerra J., Santos-Ruiz L., Andrades J.A., Mari-Beffa M. The stem cell niche should be a key issue for cell therapy in regenerative medicine. Stem Cell Rev and Rep. 2011; 7: 248–55. https://doi.org/10.1007/s12015-010-9195-5
  9. Sekundo W., Kunert K., Russmann C., Gille A., Bissmann W., Stobrawa G., Sticker M., Bischoff M., Blum M. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results. J. Cataract Refract Surg. 2008; 34 (9): 1513–20. https://doi.org/10.1016/j.jcrs.2008.05.033
  10. Kowtharapu B., Murin R., Junemann A., Stachs O. Role of corneal stromal cells on epithelial cell function during wound healing. Int J. Mol. Sci. 2018; 19 (2): E464. https://doi.org/10.3390/ijms19020464
  11. Jester J.V., Barry-Lane P.A., Cavanagh H.D., Petroll W.M. Induction of alpha-smooth muscle actin expression and myofibroblast transformation in cultured corneal keratocytes. Cornea. 1996; 15: 505–16.
  12. Zellander A., Wardlow M., Djalilian A., Zhao C., Abiade J., Cho M. Engineering copolymeric artificial cornea with salt porogen. J. Biomed Mater Res A. 2014; 102 (6): 1799–808. https://doi.org/10.1002/jbm.a.34852
  13. Fuoco C., Salvatori M.L., Biondo A., Shapira-Schweitzer K., Santoleri S., Antonini S., Bernardini S., Tedesco F.S., Cannata S., Seliktar D., Cossu G., Gargioli C. Injectable polyethylene glycol-fibrinogen hydrogel adjuvant improves survival and differentiation of transplanted mesoangioblasts in acute and chronic skeletal-muscle degeneration. Skeletal Muscle. 2012; 2 (1): 24. https://doi.org/10.1186/2044-5040-2-24
  14. Higa K., Takeshima N., Moro F., Kawakita T., Kawashima M., Demura M., Shimazaki J., Asakura T., Tsubota K., Shimmura S. Porous silk fibroin film as a transparent carrier for cultivated corbeal epithelial sheets. J Biomater Sci Polym Ed. 2011; 22 (17): 2261–76. https://doi.org/10.1163/092050610X538218
  15. Mi S., Chen B., Wright B., Connon C.J. Ex vivo construction of an artificial ocular surface by combination of corbeal limbal epithelial cells and a compressed collagen scaffold containing keratocytes. Tissue Eng Part A. 2010; 16 (6): 2091–100. https://doi.org/10.1089/ten.TEA.2009.0748
  16. Huhtala A., Pohionen T., Salminen L., Salminen A., Kaarniranta K., Uusitalo H. In vitro biocompatibility of degrable biopolymers in cell line cultures from various ocular tissues: extraction studies. J. Mater Sci Mater Med. 2008; 19 (2): 645–9. https://doi.org/10.1002/jbm.a.31319
  17. Lykov A.P., Surovtseva M.A., Poveschenko O.V.. Stanishevskaja O.M., Chernyh D.V., Arben'eva N.S., Bratko V.I. Lechenie idiopaticheskoj vozrastnoj makuljarnoj degeneratsii autologichnoj plazmoj, obogaschennoj lizatom trombotsitov: prospektivnoe issledovanie. Vestnik RAMN. 2018; 73 (1): 40–8. https://doi.org/10.15690/vramn932[Lykov A.P., Poveshchenko O.V., Surovtseva M.A., et al. Autologous Plasma Enriched with Platelet Lysate for the Treatment of Idiopathic Age-Related Macular Degeneration: A Prospective Study. Annals of the Russian Academy of Medical Sciences. 2018; 73 (1): 40–8 (In Russian). https://doi.org/10.15690/vramn932]
  18. Lykov A.P., Poveshchenko O.V., Bondarenko N.A., Surovtseva M.A. Therapeutic potential of fibroblast combined with platelet-rich plasma on burn skin wound healing. J. Biol Today’s World. 2019; 8 (1): 1–5. https://doi.org/10.15412/J.JBTW.010