MITOCHONDRIA PROTEINS OF CARDIOMYOCYTES AS MOLECULAR TARGETS OF THE PREPARATION V007

DOI: https://doi.org/10.29296/24999490-2021-06-05

I.M. Kvetnoy(1, 2), E.S. Mironova(1, 2), Y.S. Krylova( 2), T.S. Zubareva( 2), D.O. Leont’eva( 2), V.O. Polyakova( 2), 1-Iva Pharm LLC, Pskovskaya st., 17, St. Petersburg, 190121, Russian Federation; 2-St. Petersburg Research Institute of Phthisiopulmonology of the Ministry of Health

Introduction. Mitochondria are one of the most important cellular organelles that provide cells with energy, take part in cellular renewal and the implementation of endogenous mechanisms of cellular immunity. The study of the structural and functional organization of mitochondria is extremely important and promising for the development of targeted routes of action of pharmacological drugs in various pathologies and aging. The aim of the study. The aim was to study the effect of the V007 preparation on the expression of mitochondrial biomarkers in the myocardial cells of old rats in vivo to elucidate the possible mechanism of its targeted action. Methods. Molecular biological methods were used to study the expression of key mitochondrial proteins: Tom70, Tom20, VDAC, DRP1, prohibitin, Parkin, PINK1 in the myocardium of old rats in normal conditions and with the use of the innovative drug V007. Results. The study made it possible to reveal that V007 is a drug that regulates and normalizes the functions of mitochondria. The concept of the targeted action of V007 at the molecular level has been detailed, intracellular and interstitial signaling molecules, which may be targets of its pharmacological action, have been additionally verified, which makes it possible to expand the indications and scope of its application for the prevention and treatment of socially significant diseases.
Keywords: 
Conclusion. This study opens up wide opportunities for further study of V007 as a promising drug with a general regulatory and

Список литературы: 
  1. Anderson A.J., Jackson T.D., Stojanovski D. Mitochondria—hubs for regulating cellular biochemistry: emerging concepts and networks Biology, Medicine. Open Biology. 2019; 9: 1–15. https://doi.org/10.1098/rsob.190126.
  2. Araiso Y., Tsutsumi A., Qiu J., Imai K., Shiota T., Song J., Lindau C., Wenz L.S., Sakaue H., Yunoki K. Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature. 2019; 575: 395–401. https://doi.org/10.1038/s41586-019-1680-7.
  3. Pfanner N., Warscheid B., Wiedemann N. Mitochondrial proteins: From biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 2019; 20: 267–84. https://doi.org/10.1038/s41580-018-0092-0.
  4. Wang P., Wang D., Yang Y., Hou J., Wan J., Ran F., Dai X., Zhou P., Yang Y. Tom70 protects against diabetic cardiomyopathy through its antioxidant and antiapoptotic properties. Hypertens Res. 2020; 43 (10): 1047–56. https://doi.org/10.1038/s41440-020-0518-x.
  5. Hira S., Packialakshmi B., Tang E., Zhou X. Dexamethasone upregulates mitochondrial Tom20, Tom70, and MnSOD through SGK1 in the kidney cells. J. Physiol Biochem. 2021; 77 (1): 1–11. https://doi.org/10.1007/s13105-020-00773-x.
  6. Di Maio R. , Barrett P.J., Hoffman E.K., Barrett C.W., Zharikov A., Borah A., Hu X., McCoy J., Chu Ch.T., Burton E.A., Hastings T.G. , Greenamyre T. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. J. Sci Transl Med. 2016; 8 (342): 342ra78. https://doi.org/10.1126/scitranslmed.aaf3634.
  7. Fang D., Maldonado E.N. VDAC Regulation: A Mitochondrial Target to Stop Cell Proliferation. Adv. Cancer Res. 2018; 138: 41–69. https://doi.org/10.1016/bs.acr.2018.02.002.
  8. Shoshan-Barmatz V., Shteinfer-Kuzmine A., Verma A. VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases. Biomolecules. 2020; 10 (11): 1485. https://doi.org/10.3390/biom10111485.
  9. Tian L., Neuber-Hess M., Mewburn J., Dasgupta A., Dunham-Snary K., Wu D. Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension. J. Mol. Med. 2017; 95: 381–93. https://doi.org/10.1007/s00109-017-1522-8.
  10. Jin J., Wei X.-X., Zhi X.-L., Wang X.-H., Meng D. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin. 2020; 42 (5): 655–64. https://doi.org/10.1038/s41401-020-00518-y.
  11. Chowdhury D., Kumar D., Sarma P., Tangutur A., Pal Bhadra M. PHB in Cardiovascular and Other Diseases: Present Knowledge and Implications. Curr Drug Targets. 2017; 18 (16): 1836–51. https://doi.org/10.2174/1389450117666160824161225.
  12. Da Costa C.A., Duplan E., Rouland L., Checler F. The transcription factor function of Parkin: breaking the dogma. Front Neurosci. 2018; 12: 965. https://doi.org/10.3389/fnins.2018.00965.
  13. Gladkova C., Maslen S.L., Skehel J.M., Komander D. Mechanism of Parkin activation by PINK1. Nature. 2018; 559: 410–4. https://doi.org/10.1038/s41586-018-0224-x.
  14. Heo J.M., Ordureau A., Paulo J.A., Rinehart J., Harper J.W. The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell. 2015; 60: 7–20. https://doi.org/10.1016/j.molcel.2015.08.016.
  15. Sekine S., Youle R.J. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol. 2018; 16 (1): 2. https://doi.org/10.1186/s12915-017-0470-7.
  16. Ventura-Clapier R., Piquereau J., Veksler V., Garnier A. Estrogens, Estrogen Receptors Effects on Cardiac and Skeletal Muscle Mitochondria. Front Endocrinol (Lausanne). 2019; 10: 557. https://doi.org/10.3389/fendo.2019.00557.
  17. Lazarou M., Jin S.M., Kane L.A., Youle R.J. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell. 2012; 22: 320–33. https://doi.org/10.1016/j.devcel.2011.12.014.
  18. Quinn P., Moreira P., Ambrósio A., Alves C. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol Commun. 2020; 8 (1): 189. https://doi.org/10.1186/s40478-020-01062-w.
  19. Shoshan-Barmatz V., Maldonado E.N., Krelin Y. VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress. Cell Stress. 2017; 1: 11–36. https://doi.org/10.15698/cst2017.10.104.
  20. Osellame L.D. Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission. J. Cell Sci. 2016; 129: 2170–81. https://doi.org/10.1242/jcs.185165.
  21. Cooper H.A., Eguchi S. Inhibition of mitochondrial fission as a novel therapeutic strategy to reduce mortality upon myocardial infarction. Clin. Sci. 2018; 132: 2163–7. https://doi.org/10.1042/CS20180671.