CIRCADIAN RHYTHM OF MELATONIN RECEPTOR EXPRESSION IN THE BUCCAL EPITHELIUM OF PREGNANT WOMEN AND THEIR NEWBORN CHILDREN: DEVELOPMENT OF MOLECULAR MARKERS FOR PROGNOSIS OF DELAYED POSTNATAL PATHOLOGY

DOI: https://doi.org/10.29296/24999490-2022-01-06

I.I. Evsyukova(1), V.O. Polyakova(2), T.S. Kleimenova(3), I.M. Kvetnoy(4, 5), M.A. Paltzev(6) 1-Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott, Mendeleevskaya line 3, Saint-Petersburg, 199034, Russian Federation; 2-Scientific center St. Petersburg State Pediatric Medical University, st. Litovskaya 2, Saint-Petersburg, 194100, Russian Federation; 3-Department of Medical Biology St. Petersburg State Pediatric Medical University, st. Litovskaya 2, Saint- Petersburg, 194100, Russian Federation; 4-FSBI «St. Petersburg Research Institute of Phthisiopulmonology» of the Ministry of Health of the Russian Federation, Ligovsky prospect, 2–4, St. Petersburg, 191036, Russian Federation; 5-Federal State Budgetary Educational Institution of Higher Education “St. Petersburg State University”, Universitetskaya embankment, 7–9, St. Petersburg, 199034, Russian Federation; 6-FGBOU VO “Moscow State University named after M.V. Lomonosov”, Leninskie gory, no. 1, Moscow, 119991, Russian Federation

Introduction. Buccal epithelium (BE), in which cells the expression of signal molecules reflecting the state of homeostasis of the body in normal and pathological conditions is verified, is used as a diagnostic material for a number of diseases in adults. The aim of the research was to study the circadian rhythm of melatonin receptor (MT) expression in the buccal epithelium of pregnant women and their newborn children for the possible development of a non-invasive method for molecular prediction of delayed postnatal pathology. Methods. The MT in blood serum and receptors MT1 and MT2 in BE was studied in 13 pregnant women and their newborns on the 3rd day of life at 12.00 pm and at 04.00 am. Results. The concentration of MT in the blood of healthy pregnant women (group 1) differed during the day and at night time (12.2±0.1 and 81.6±7.0 pg/ml, р0.05). A similar pattern was also observed in newborns of both groups, but the concentration of MT in the blood was significantly lower than in mothers. The expression of MT receptors in the buccal epithelium in pregnant women of both groups had the same pattern of changes as the concentration of MT in the blood: the circadian rhythm of MT1 and MT2 receptors expression in patients of the first group and its absence in the second group. The children of group 1 had circadian fluctuations in the expression of MT1 and MT2, while they were absent in the second group. During the daytime in the first group, blood MT level correlated with the expression of MT2 ((R=0.5), and at night with MT1(R=0.78) and MT2 (R=0.4). In children of the second group, there were no correlation between the blood MT levels and the expression of receptors. Conclusion. The results obtained give reason to consider the use of this non-invasive method promising for predicting the risk of delayed postnatal pathology, the development of which may be associated with intrauterine disruption of the formation of the circadian rhythm of MT
Keywords: 
pregnant women, newborns, buccal epithelium, melatonin, MT1, MT2 receptors

Список литературы: 
  1. Ivanov D.O., Evsyukova I.I., Mironova E.S., Kvetnoy I.M., Nasyrov R.A. Maternal Melatonin Deficiency Leads to Endocrine Pathologies in Children in Early Ontogenesis. Int. J. Mol. Sci. 2021; 22 (4): 058. https://doi.org/10.3390/ijms22042058.
  2. Sagrillo-Fagundes L., Assuncao Salustiano E.M., Yen P.W., Soliman A., Vaillancourt C. Melatonin in Pregnancy: Effects on Brain Development and CNS Programming Disorders. Curr. Pharm. Des. 2016; 22 (8): 978–86. https://doi.org/10.2174/1381612822666151214104624
  3. Evsjukova I.I. Rol' melatonina v prenatal'nom ontogeneze. Zhurnal evoljutsionnoj biohimii i fiziologii. 2021; 57 (1): 33–43. https://doi.org/10.31857/S0044452921010022 [Evsyukova I.I. The Role of Melatonin in Prenatal Ontogenesis. Journal of Evolutionary Biochemistry i Physiology. 2021; 57 (1): 33–43 (in Russian)].
  4. Astiz M., Oster H. Feto-Maternal Crosstalk in the Development of the Circadian Clock System. Front. Neurosci. 2021; 14:631687. Published online 2021 Jan 12. https://doi.org/10.3389/fnins.2020.631687
  5. Galano A., Tan D.X., Reiter R.J. Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules. 2018; 23 (3): 530. https://doi.org/10.3390/molecules23030530
  6. Cipolla-Neto J., Amaral F.G. Melatonin as a hormone: new physiological and clinical insights. Endocr. Rev. 2018; 39 (6): 990–1028. https://doi.org/10.1210/er.2018-00084
  7. Seron-Ferre M., Mendez M., Abarzua-Catalan L., Vilches N., Valenzuela F.J., Reynolds H.E., Llanos A.J., Rojas A., Valenzuela G.J., Torres-Farfan C. Circadian rhythms in the fetus. Mol. Cell. Endocrinol. 2012; 349 (1): 68–75. https://doi.org/10.1016/j.mce.2011.07.039
  8. Chen Y-C., Sheen J.M., Tiao M.M., Tain Y.L., Huang L.T. Roles of Melatonin in Fetal Programming in Compromised Pregnancies. Int. J. Mol. Sci. 2013; 14 (3): 5380–401. https://doi.org/10.3390/ijms14035380
  9. Kennaway D.J. Programming of the fetal suprachiasmatic nucleus and subsequent adult rhythmicity. Trends Endocrinol. Metab. 2002; 13 (9): 398–402. PMID: 12367822
  10. Mirick D.K., Davis S. Melatonin as a Biomarker of Circadian Dysregulation. Cancer Epidemiol. Biomarkers Prev. 2008; 17 (12): 3306–13. https://doi.org/ 10.1158/1055-9965.EPI-08-0605
  11. Mandrell B.N., Avent Y., Walker B., Loew M., Tynes B.L., McLaughlin Crabtree V. In-Home Salivary Melatonin Collection: Methodology for Children and Adolescents. Dev. Psychobiol. 2018; 60 (1): 118–22. https://doi.org/10.1002/dev.21584.
  12. Kapek L., Paprocka J., Kijonka M., Zych M., Emich-Widera E., Rzepka-Migut B., Borys D., Kaczmarczyk-Sedlak I., Sokoł M. Circadian Profile of Salivary Melatonin Secretion in Hypoxic Ischemic Encephalopathy. Int. J. Endocrinol. 2020; 2020: 6209841. Published online 2020 Sep. 25.https://doi.org/10.1155/2020/6209841
  13. Pourhosseina M.S.J., Shahtaheri S.J., Mazloumia A., Rahimi-Foroushanid A., Helmi-Kohneshahria M., Khan H.M. Dispersive Liquid–Liquid Micro extraction for the Determination of Salivary Melatonin as a Biomarker of Circadian Rhythm. J. Analytical Chemistry. 2018; 73 (10): 966–972. https://doi.org/10.1134/S106193481810009X
  14. Bagcia S., Muellera A., Reinsbergb J., Heepa A., Bartmanna P., Franzac A.R. Saliva as a valid alternative in monitoring melatonin concentrations in newborn infants. Early Hum. Dev. 2009; 85 (9): 595–8. https://doi.org/ 10.1016/j.earlhumdev.2009.06.003.
  15. Poljakova V.O., Pal'tseva E.M., Krulevskij V.A. Bukkal'nyj epitelij. Novye podhody k molekulrnoj diagnostike sotsial'no-znachimoj patologii (pod red. akad. M.A.Pal'tseva). SPb.: N-L, 2015; 128. [Polyakova V.O., Paltseva E.M., Krulevsky V.A. Buccal epithelium. New approaches to the molecular diagnosis of socially significant pathology (Red. akad. M.A. Paltzev). SPb: N-L, 2015; 128 (in Russian)]
  16. Carbone A., Linkova N., Polyakova V., Mironova E., Hashimova U., Gadzhiev A., Safikhanova K., Kvetnaia T., Krylova J., Tarquini R., Mazzoccoli G., Kvetnoy I. Melatonin and Sirtuins in Buccal Epithelium: Potential Biomarkers of Aging and Age-Related Pathologies. Int. J. Mol. Sci. 2020; 21 (21): 8134. https://doi.org/10.3390/ijms21218134
  17. Chan K.H, WongY.H. A Molecular and Chemical Perspective in Defining Melatonin Receptor Subtype Selectivity. Int. J. Mol. Sci. 2013; 14 (9): 18385–406. https://doi.org/10.3390/ijms140918385
  18. Kopustinskiene D.M., Bernatoniene J. Molecular Mechanisms of Melatonin-Mediated Cell Protection and Signaling in Health and Disease. Pharmaceutics. 2021; 13 (2): 129. https://doi.org/10.3390/pharmaceutics13020129
  19. Dubocovich M.L. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med. 2007; 8 (3): 34–42. https://doi.org/10.1016/j.sleep.2007.10.007.
  20. Stauch B., Johansson L.C., Cherezov V. Structural insights into melatonin receptors. FEBS J. 2020; 287 (8): 1496–510. https://doi.org/10.1111/febs.15128.
  21. Carmona-Alcocer V., Abel J.H., Sun T.C., Petzold L.R., Doyle F.J. III, Simms C.L., Herzog E.D. Ontogeny of circadian rhythms and synchrony in the suprachiasmatic nucleus. J. Neurosci. 2018; 38 (6): 1326–34. https://doi.org/10.1523/JNEUROSCI.2006-17.2017
  22. Pala D., Lodola A., Bedini A., Spadoni G., Rivara S. Homology models of melatonin receptors: Challenges and recent advances. Int. J. Mol. Sci. 2013; 14 (4): 8093–121. https://doi.org/10.3390/ijms14048093.
  23. Jockers R., Delagrange P., Dubocovich M.L., Markus R.P., Renault N., Tosini G., Cecon E., Zlotos D.P. Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol. 2016; 173 (18): 2702–25. https://doi.org/10.1111/bph.13536.
  24. Acuña‑Castroviejo D., Escames G., Venegas C., Diaz‑Casado M.E., Lima‑Cabello E., López L.C., Rosales‑Corral S., Tan D-X., Reiter R.J. Extrapineal melatonin: sources, regulation, and potential functions. Cell. Mol. Life Sci. 2014; 71 (16): 2997–3025. https://doi.org/10.1007/s00018-014-1579-2
  25. Bates K. , Herzog E.D. Maternal-Fetal Circadian Communication During Pregnancy. Front. Endocrinol. (Lausanne). 2020; 11: 198. https://doi.org/10.3389/fendo.2020.00198
  26. Evsjukova I.I., Kvetnoj I.M. Melatonin i tsirkadiannye ritmy v sisteme mat'–platsenta–plod. Mol. med. 2018; 16 (6): 9–13. https://doi.org/ 10.29296/24999490-2018-06-02. [Evsyukova I.I. , Kvetnoy I.M. Melatonin i zircadiannie ritmi v sisteme mate-placenta-plod. Molekulyarnaya meditsina. 2018; 16 (6): 9–13 (in Russian)]
  27. Zitouni M., Masson-Pevet M., Gauer F., Pevet P. Influence of maternal melatonin on melatonin receptors in rat offspring. J. Neural Transm [Gen Sect] 1995; 100 (2): 111–22. https://doi.org/10.1007/BF01271534.