COMPARATIVE STUDY OF THE SOLUBLE FORMS OF IMMUNE CHECKPOINT PROTEINS VISTA, PD-1, PD-L1, AND BONE HOMEOSTASIS REGULATOR RANKL IN BONE TUMOR PATIENTS

DOI: https://doi.org/10.29296/24999490-2022-06-04

E.S. Gershtein(1, 2), Yu.B. Kuzmin(1, 2), A.A. Alferov(1, 2), E.A. Korotkova(1), P.V. Tsarapaev(1), N.Yu. Sokolov(3), I.N. Kuznetsov(2),
O.I. Vashketova(1), E.M. Kozlova(1), O.O. Yanushevich(2), I.V. Boulytcheva(1), I.S. Stilidi(1), N.E. Kushlinskii(1, 2)
1-N.N. Blokhin National Medical Research Center of Oncology, Kashirskoe shosse, 23, Moscow, 115522, Russian Federation;
2-A.I. Evdokimov Moscow State University of Medicine and Dentistry, St. Delegatskaya, 20/2, Moscow, 127473, Russian Federation;
3-S.P. Botkin Сity Clinical Hospital, 2nd Botkinsky pr-d, 5, Moscow, 125284, Russian Federation

Background. Low sensitivity of bone tumors to various schemes of standard chemotherapy stimulated the search of new targets for their medicamentous treatment. Among such targets are the so-called “immune checkpoints” promoting the escape of the tumor from the immune response of the organism, and some proteins directly affecting the remodeling and homeostasis of bone tissue. The aim of this study was the comparative evaluation of the content of the soluble forms of VISTA, PD-1, PD-L1, and RANKL in blood serum of patients with malignant and borderline bone tumors, and practically healthy persons; analysis of the associations between these markers and the key clinical and pathological features of bone tumors. Material and methods. The study enclosed 82 patients with malignant bone tumors (osteosarcoma – 50, chondrosarcoma – 16, chordoma – 12, Ewing sarcoma – 4), 18 patients with borderline giant-cell bone tumor (GCBT), and 29 practically healthy persons. Proteins’ content was measured in blood serum with standard ELISA kits: «Human VISTA/B7-H5/PD-1H ELISA Кit» (RayBiotech,), «Human PD-L1 Platinum ELISA», «Human PD-1 ELISA kit» (Affimetrix, eBioscience), «ampli-sRANKL» (Biomedica Medizinprodukte). Results. In patients with bone sarcomas, a statistically significant increase in the level of sPD-L1 was revealed, as well as a pronounced trend towards a decrease in the levels of sVISTA and an increase in sRANKL compared with the control, while the level of sPD-1 practically did not differ from the control. A weak positive correlation between sVISTA and sPD-1 serum levels most prominent in chordoma patients (rs=0.63) was observed. Significant positive correlation was also found between sPD-1 and sRANKL concentrations. sVISTA and sRANKL levels did not differ significantly between histological types of bone sarcomas. More than 20-fold increase of sVISTA level in Ewing sarcoma patients as compared to other malignant bone neoplasms did not reach the statistical significance level. The highest sPD-1 level was also observed in Ewing sarcoma, the difference with chordoma and chondrosarcoma being statistically significant. In GCBT patients both sPD-L1 and sPD-1 levels were significantly increased as compared to control, sVISTA level did not differ from control, while sRANKL was significantly higher than both in control, and in bone sarcoma patients. Negative correlation between sVISTA and sRANKL (rs=-0.67) was also observed in this patients group. Conclusion. Multidirectional changes in the levels of soluble forms of the proteins affected by targeted immunotherapy in peripheral blood of malignant and borderline bone tumor patients were demonstrated. The most prominent changes were found in the neoplasms with specific origin – GCBT and Ewing sarcoma that has a neuroectodermal derivation. Presumably, these diseases are the most plausible candidates for immune modulatory therapies.
Keywords: 
bone tumors, sVISTA, sPD-1, sPD-L1, sRANKL, blood serum

Список литературы: 
  1. Герштейн Е.С., Тимофеев Ю.С., Зуев А.А., Кушлинский Н.Е. Лиганд-рецепторная система RANK/RANKL/OPG и ее роль при первичных новообразованиях костей (анализ литературы и собственные результаты). Успехи молекулярной онкологии. 2015; 2 (3): 51–9. [Gershtein E.S., Timofeev Yu.S., Zuev A.A., Kushlinskii N.E. Ligand-receptor system RANK/RANKL/OPG and its role in primary bone neoplasms (literature analysis and own results. Uspekhi molekulyarnoy onkologii. 2015; 2 (3): 51–9 (In Russian)].
  2. Burkiewicz J.S., Scarpace S.L., Bruce S.P. Denosumab in osteoporosis and oncology. Ann. Pharmacother. 2009; 43 (9): 1445–55. DOI: 10.1345/aph.1M102.
  3. Lopez-Pousa A., Broto J.M., Garrido T., Vazquez J. Giant cell tumour of bone: new treatments in development. Clin. Transl. Oncol. 2015; 17 (6): 419–30. DOI: 10.1007/s12094-014-1268-5.
  4. Branstetter D.G., Nelson S.D., Manivel J.C., Blay J.Y., Chawla S., Thomas D.M., Jun S., Jacobs I. Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin. Cancer Res. 2012; 18 (16): 4415–24. DOI: 10.1158/1078-0432.CCR-12-0578.
  5. Cathomas R., Rothermundt C., Bode B., Fuchs B., von Moos R., Schwitter M. RANK ligand blockade with denosumab in combination with sorafenib in chemorefractory osteosarcoma: a possible step forward? Oncology. 2014; 88 (4): 257–60. DOI: 10.1159/000369975.
  6. Guan J., Lim K.S., Mekhail T., Chang C.C. Programmed Death Ligand-1 (PD-L1) Expression in the Programmed Death Receptor-1 (PD-1)/PD-L1 Blockade: A Key Player Against Various Cancers. Arch. Pathol. Lab. Med. 2017; 141 (6): 851–61. DOI: 10.5858/arpa.2016-0361-RA.
  7. Page D.B., Bear H., Prabhakaran S., Gatti-Mays M.E., Thomas A., Cobain E. et al. Two may be better than one: PD-1/PD-L1 blockade combination approaches in metastatic breast cancer. NPJ Breast Cancer. 2019; 5: 34. DOI: 10.1038/s41523-019-0130-x.
  8. Homicsko K., Duraiswamy J., Doucey M.A., Coukos G. Combine and Conquer: Double CTLA-4 and PD-1 Blockade Combined with Whole Tumor Antigen Vaccine Cooperate to Eradicate Tumors. Cancer Res. 2016; 76 (23): 6765–7. DOI: 10.1158/0008-5472.CAN-16-2868.
  9. Yuan L., Tatineni J., Mahoney K.M., Freeman G.J. VISTA: A Mediator of Quiescence and a Promising Target in Cancer Immunotherapy. Trends Immunol. 2021; 42 (3): 209–27. DOI: 10.1016/j.it.2020.12.008.
  10. Deng J., Le Mercier I., Kuta A., Noelle R.J. A New VISTA on combination therapy for negative checkpoint regulator blockade. J. Immunother. Cancer. 2016; 4: 86. DOI: 10.1186/s40425-016-0190-5.
  11. 11. Muller S., Victoria Lai W., Adusumilli P.S., Desmeules P., Frosina D., Jungbluth A. et al. V-domain Ig-containing suppressor of T-cell activation (VISTA), a potentially targetable immune checkpoint molecule, is highly expressed in epithelioid malignant pleural mesothelioma. Mod. Pathol. 2020; 33 (2): 303–11. DOI: 10.1038/s41379-019-0364-z.
  12. Popovic A., Jaffee E.M., Zaidi N. Emerging strategies for combination checkpoint modulators in cancer immunotherapy. J. Clin. Invest. 2018; 128 (8): 3209–18. DOI: 10.1172/JCI120775.
  13. Кушлинский Н.Е., Фридман М.В., Морозов А.А., Герштейн Е.С., Кадагидзе З.Г., Матвеев В.Б. Современные подходы к иммунотерапии рака почки. Онкоурология. 2018; 14 (2): 54–67. DOI: 10.17650/1726-9776-2018-14-2-54-67. [Kushlinskii N.E., Fridman M.V., Morozov A.A., Gershtein E.S., Kadagidze Z.G., Matveev V.B. Modern approaches to kidney cancer immunotherapy. Onkourologiya. 2018; 14 (2): 54–67 (In Russian)].
  14. Yuasa T., Masuda H., Yamamoto S., Numao N., Yonese J. Biomarkers to predict prognosis and response to checkpoint inhibitors. Int. J. Clin. Oncol. 2017; 22 (4): 629–34. DOI: 10.1007/s10147-017-1122-1.
  15. Topalian S.L., Taube J.M., Anders R.A., Pardoll D.M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer. 2016; 16 (5): 275–87. DOI: 10.1038/nrc.2016.36.
  16. Kushlinskii N.E., Gershtein E.S., Morozov A.A., Goryacheva I.O., Filipenko M.L., Alferov A.A., Bezhanova S.D., Bazaev V.V., Kazantseva I.A. Soluble Ligand of the Immune Checkpoint Receptor (sPD-L1) in Blood Serum of Patients with Renal Cell Carcinoma. Bull. Exp. Biol. Med. 2019; 166 (3): 353–7. DOI: 10.1007/s10517-019-04349-8.
  17. Герштейн Е.С., Уткин Д.О., Горячева И.О., Хуламханова М.М., Петрикова Н.А., Виноградов И.И., Алферов А.А., Стилиди И.С., Кушлинский Н.Е. Растворимые формы рецептора контрольной точки иммунитета PD-1 и его лиганда PD-L1 в плазме крови больных новообразованиями яичников. Альм. Клин. Мед. 2018; 46 (7): 690–8. DOI: 10.18786/2072-0505-2018-46-7-690-698. [Gershtein E.S., Utkin D.O., Goryacheva I.O., Khulamkhanova M.M., Petrikova N.A., Vinogradov I.I., Alferov A.A., Stilidi I.S., Kushlinskii N.E. Soluble forms of the immune checkpoint receptor PD-1 and its ligand PD-L1 in the blood plasma of patients with ovarian neoplasms. Al'm. Klin. Med. 2018; 46 (7): 690–8 (In Russian)].
  18. Huang H.F., Zhu H., Yang X.T., Guo X.Y., Li S.S., Xie Q., Tian X.B., Yang Z. Progress in research on tumor immune PD-1/PD-L1 signaling pathway in malignant bone tumors. Zhonghua zhong liu za zhi. Chinese J. Oncol. 2019; 41 (6): 410–4. DOI: 10.3760/cma.j.issn.0253-3766.2019.06.003.
  19. Kushlinskii N.E., Alferov A.A., Timofeev Y.S., Gershtein E.S., Bulycheva I.V., Bondarev A.V. et al. Key Immune Checkpoint PD-1/PD-L1 Signaling Pathway Components in the Blood Serum from Patients with Bone Tumors. Bull. Exp. Biol. Med. 2020; 170 (1): 64–8. DOI: 10.1007/s10517-020-05005-2.
  20. Xie S., Huang J., Qiao Q., Zang W., Hong S., Tan H. et al. Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors. Cancer Immunol. Immunother. 2018; 67 (11): 1685–94. DOI: 10.1007/s00262-018-2227-8.
  21. Hou Z., Pan Y., Fei Q., Lin Y., Zhou Y., Liu Y., Guan H., Yu X., Lin X., Lu F. et al. Prognostic significance and therapeutic potential of the immune checkpoint VISTA in pancreatic cancer. J. Cancer Res. Clin. Oncol. 2021; 147 (2): 517–31. DOI: 10.1007/s00432-020-03463-9.
  22. Choi J.W., Kim Y.J., Yun K.A., Won C.H., Lee M.W., Choi J.H., Chang S.E., Lee W.J. The prognostic significance of VISTA and CD33-positive myeloid cells in cutaneous melanoma and their relationship with PD-1 expression. Sci. Rep. 2020; 10 (1): 14372. DOI: 10.1038/s41598-020-71216-2.
  23. Lewin J., Thomas D. Denosumab: a new treatment option for giant cell tumor of bone. Drugs Today (Barc). 2014; 49 (11): 693–700. DOI: 10.1358/dot.2013.49.11.2064725.