CARBONYLATION OF SPERMОPLASM PROTEINS IN PATIENTS WITH REDUCED FERTILITY

DOI: https://doi.org/10.29296/24999490-2023-02-09

A.F. Ishtulin, N.V. Korotkova, I.V. Matveeva, S.L. Ishtulina. I.V. Minaev, Е.А. Ishchenko
Ryazan State Medical University, Vysokovoltnaya, 9, Ryazan, 390026, Russian Federation

Introduction. In the publications of many authors, there is evidence that the mechanism of development of chronic prostatitis and varicocele is oxidative stress, leading to a decrease in male fertility. This problem requires a deeper study. The aim of the study. To evaluate the carbonylation of spermоplasm’s proteins in patients with chronic prostatitis III B and varicocele II and III degrees with concomitant asthenozoospermia in the anamnesis. Methods. Determination of the total protein concentration in the spermoplasm was carried out by the biuretic method using commercial kits of the company (Mindrey, China) on a biochemical analyzer (Mindrey BS 120, China). Carbonylated proteins in the spermoplasm were evaluated using the R.L. Levine method modified by E.E. Dubinina. Results. In the course of our study, it was found that in patients with chronic prostatitis III B, accompanied by asthenozoospermia and in patients with varicocele II and III degrees with concomitant asthenozoospermia, an increase in carbonylated proteins in the spermoplasm is noted at all absorption maximum (λ356, λ370, λ430, λ30), on three of them statistically significant; at the same time, the reserve-adaptive potential in relation to the oxidative effect is reduced. Thus, the established decrease in fertility in patients with the studied pathology is associated with an increase in carbonylated proteins in the spermoplasm
Keywords: 
oxidative modification of proteins, chronic prostatitis, varicocele, asthenozoospermia, spermoplasm

Список литературы: 
  1. Agarwal A., Rana M., Qiu E., AlBunni H., Bui A. D., Henkel R. Role of oxidative stress, infection and inflammation in male infertility. Andrologia. 2018; 50 (11): e13126. DOI:10.1111/and.13126
  2. Калинин Р.Е., Абаленихина Ю.В., Пшенников А.С., Сучков И.А., Исаков С.А. Взаимосвязь окислительного карбонилирования белков и лизосомального протеолиза плазмы в условиях экспериментального моделирования ишемии и ишемии-реперфузии. Наука молодых – Eruditio Juvenium. 2017; 3: 338–51. [Kalinin R.E., Abalenikhina Yu.V., Pshennikov A.S., Suchkov I.A., Isakov S.A. Relationship between oxidative protein carbonylation and lysosomal plasma proteolysis under conditions of experimental modeling of ischemia and ischemia-reperfusion. Nauka molodyh (Eruditio juvenium). 2017; 3: 338–351 (in Russian)]
  3. Абаленихина Ю.В., Ерохина П.Д., Сеидкулиева А.А., Завьялова О.А., Щулькин А.В., Якушева Е.Н. Внутриклеточная локализация и функция ядерного фактора эритроидного происхождения 2 (Nrf2) в условиях моделирования окислительного стресса in vitro. Российский медико-биологический вестник имени академика И.П. Павлова. 2022; 30 (3): 295–304. DOI: 10.17816/PAVLOVJ105574 [Abalenikhina YuV, Erokhina PD, Seidkuliyeva AA, Zav’yalova OA, Shchul’kin AV, Yakusheva EN. Intracellular Location and Function of Nuclear Factor of Erythroid Origin 2 (Nrf2) in Modeling Oxidative Stress in vitro. I.P. Pavlov Russian Medical Biological Herald. 2022; 30 (3): 295–304 (in Russian)]
  4. Фомина М.А., Кудлаева А.М., Рябков А.Н. Влияние L-карнитина in vitro на активность лизосомальных цистеиновых протеиназ и состояние лизосомальных мембран. Российский медико-биологический вестник им. академика И.П. Павлова. 2017; 1 (25): 14–20. DOI: 10.23888/PAVLOVJ2017114-20 [Fomina M.A., Kudlaeva A.M., Rjabkov A.N. The effect of L-carnitine in vitro on the activity of lysosomal cysteine proteinases and the state of lysosomal membranes. Rossijskij Mediko-Biologicheskij Vestnik im. Akademika I.P. Pavlova. 2017; 1 (25): 14–20 (in Russian)]
  5. Завьялова О.А., Марсянова Ю.А., Абаленихина Ю.В., Иштулин А.Ф., Горелова А.Е. Влияние металлов переменной валентности на окислительную модификацию аминокислотных остатков альбумина. Наука молодых – Eruditio Juvenium. 2021; 9 (3): 369–76. DOI: 10.23888/HMJ202193369-376 [Zav’yalova O.A., Marsyanova Yu.A., Abalenikhinа Yu.V., Ishtulin A.F., Gorelova A.E. The influence of metals of variable valence on the oxidative modification of albumin amino acid residues. Science of the young (Eruditio Juvenium). 2021; 9 (3): 369–76 (in Russian)]
  6. Smith R., Kaune H., Parodi D., Madariaga M., Rios R., Morales I., Castro A. Increased sperm DNA damage in patients with varicocele: relationship with seminal oxidative stress. Hum. Reprod. 2006; 21 (4): 986–93. DOI: 10.1093/humrep/dei429
  7. Asmis R., Qiao M., Rossi R.R., Cholewa J., Xu L., Asmi L. M. Adriamycin promotes macrophage dysfunction in mice. Free Radic. Biol. 2006; 41 (1): 165–74. DOI: 10.1016/j.freeradbiomed.2006.03.027
  8. Ihsan A.U., Khan F.U., Khongorzul P., Ahmad K.A., Naveed M., Yasmeen S., Cao Y., Taleb A., Maiti R., Akhter F., Liao X., Li X., Cheng Y., Khan H.U., Alam K., Zhou X. Role of oxidative stress in pathology of chronic prostatitis/chronic pelvic pain syndrome and male infertility and antioxidants function in ameliorating oxidative stress. Biomedicine and Pharmacotherapy. 2018; 106: 714–23. DOI:10.1016/j.biopha.2018.06.139
  9. Agarwal A., Virk G., Ong C., du Plessis, S. S. Effect of Oxidative Stress on Male Reproduction. The World J. of Men’s Health. 2014; 32 (1): 1–17. DOI:10.5534/wjmh.2014.32.1.1
  10. Wang K., Gao Y., Wang C., Liang M., Liao Y., Hu K. Role of oxidative stress in varicocele. Frontiers in Genetics. 2022; 23 (13): 850114. DOI: 10.3389/fgene.2022.850114
  11. Levine R.L., Garland D., Oliver C.N., Amici A., Climent I., Lenz A. G., Ahn B.W., Shaltiel S., Stadtman E.R. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymol. 1990; 186: 464–78. DOI: 10.1016/0076-6879(90)86141-h
  12. Дубинина Е.Е., Бурмистров С.О., Ходов Д.А., Поротов И.Г. Окислительная модификация белков сыворотки крови человека, метод ее определения. Вопросы медицинской химии. 1995; 41 (1): 24–6. [Dubinina E.E., Burmistrov S.O., Khodov D.A., Porotov I.G. Oxidative modification of human serum proteins. A method of determining it. Vopr Med Khim. 1995; 41 (1): 24–6 (in Russian)]
  13. . Губский Ю.И., Беленичев И.Ф., Левицкий Е.Л., Коваленко C.И., Павлов С.В., Ганчева О.В., Марченко А.Н. Токсикологические последствия окислительной модификации белков при различных патологических состояниях (обзор литературы). Cовременные проблемы токсикоголии. 2005; 8 (3): 20–7. DOI: 10.12988/bmgt.2016.6412 [Gubskij Yu.I., Belenichev I.F., Levickij E.L., Kovalenko S.I., Pavlov S.V., Ganchev O.V., Marchenko A.N. Toksikologicheskie posledstviya okislitel’noj modifikacii belkov pri razlichnyh patologicheskih sostoyaniyah (obzor literatury). Sovremennye Problemy Toksikologii. 2005; 8 (3): 20–7 (In Russian)]
  14. Condorelli R.A., Russo G.I., Calogero A.E., Morgia G., La Vignera S. Chronic prostatitis and its detrimental impact on sperm parameters: a systematic review and meta-analysis. Journal of Endocrinological Investigation. 2017; 40 (11): 1209–18. DOI: 10.1007/s40618-017-0684-0