THE ROLE OF FILAGGRIN IN THE FORMATION OF SKIN BARRIER DYSFUNCTION

DOI: https://doi.org/10.29296/24999490-2024-04-02

Y.A. Kandrashkina(1), E.A. Orlova(1), N.M. Nenasheva2, O.A. Levashova(1),
1-Penza Institute for Advanced Medical Studies – branch of the Federal State Budgetary Educational Institution
of Additional Professional Education “Russian Medical Academy of Continuous Professional Education”,
Ministry of Health of Russia,st. Stasova, 8A, Penza, 440060, Russian Federation;
2-Federal State Budgetary Educational Institution of Additional Professional Education “Russian Medical Academy of Continuous Professional Education”, Ministry of Health of Russia, st. Barrikadnaya, 2/1, build. 1, Moscow, 125993, Russia

Dysfunction of the epidermal barrier plays an important role in the development of skin inflammatory processes. Pathological changes in the intracellular composition of keratinocytes are an integral part of the modern understanding of the pathogenesis of atopic dermatitis (AD). One of the significant proteins involved in the formation of the skin barrier is filaggrin (FLG). The purpose of our review is to summarize the available data on the role of FLG in the formation of skin barrier dysfunction in AD. Material and methods. An analysis of domestic sources was carried out using the scientific electronic libraries Cyberleninka and Elibrary, and foreign sources using the PubMed/Medline databases. Results. Excessive accumulation of FLG monomers in keratinocytes during skin barrier dysfunction induces premature cell death. Intracellular vesicles/exosomes remove FLG from keratinocytes for further transport through the bloodstream. Staphylococcus aureus is able to influence intracellular vesicles, enhancing FLG transport. More than 140 variants of FLG gene mutations are known, leading to a deficiency of the protective skin protein. In AD there is an increased level of FLG in the blood serum. The level of FLG increases with the severity of the skin inflammatory process. Pregnant women with AD have higher serum FLG levels compared to nonpregnant women with AD, healthy pregnant women, and nonpregnant women. Conclusion. FLG plays a significant role in maintaining the skin barrier function. Pronounced changes in the level of FLG in the blood serum in AD allow us to consider FLG as a biomarker of exacerbation of this disease. Given the transport of FLG into the blood, further in-depth study of the role of FLG in localizations distant from the skin is necessary.
Keywords: 
filaggrin, exosomes, Staphylococcus aureus, atopic dermatitis

Список литературы: 
  1. Тамразова О.Б., Глухова Е.А. Уникальная молекула филаггрин в структуре эпидермиса и ее роль в развитии ксероза и патогенеза атопического дерматита. Клиническая дерматология и венерология. 2021; 20 (6): 102–10. [Tamrazova O.B., Gluhova E.A. A unique filaggrin molecule in the structure of the epidermis and its role in the development of xerosis and the pathogenesis of atopic dermatitis. Klinicheskaya dermatologiya i venerologiya. 2021; 20 (6): 102–10 (in Russian)].
  2. Menon G.K., Cleary G.W., Lane M.E. The structure and function of the stratum corneum. Int J. Pharm. 2012; 435 (1): 3–9. DOI: 10.1016/j.ijpharm.2012.06.005.
  3. Stefanovic N., Irvine A.D. Filaggrin and beyond: New insights into the skin barrier in atopic dermatitis and allergic diseases, from genetics to therapeutic perspectives. Ann Allergy Asthma Immunol. 2024; 132 (2): 187–95. DOI: 10.1016/j.anai.2023.09.009.
  4. Elias P.M., Gruber R., Crumrine D., Menon G., Williams M.L., Wakefield J.S., Holleran W.M., Uchida Y. Formation and functions of the corneocyte lipid envelope. Biochim Biophys Acta. 2014; 1841 (3): 314–8. DOI: 10.1016/j.bbalip.2013.09.011.
  5. Egawa G., Kabashima K. Barrier dysfunction in the skin allergy. Allergol Int. 2018; 67 (1): 3–11. DOI: 10.1016/j.alit.2017.10.002.
  6. Feingold K.R. Lamellar bodies: the key to cutaneous barrier function. J Invest Dermatol. 2012; 132 (8): 1951–3. DOI: 10.1038/jid.2012.177.
  7. Choi E.H., Kang, H. Importance of Stratum Corneum Acidification to Restore Skin Barrier Function in Eczematous Diseases. Annals of dermatology. 2024; 36 (1): 1–8. DOI: 10.5021/ad.23.078
  8. Weerheim A., Ponec M. Determination of stratum corneum lipid profile by tape stripping in combination with high–performance thin–layer chromatography. Arch Dermatol Res. 2001; 293: 191–9.
  9. Grubauer G., Elias P.M., Feingold K.R. Transepidermal water loss: the signal for recovery of barrier structure and function. J. Lipid Res. 1989; 30: 323–33.
  10. White–Chu E.F., Reddy M. Dry skin in the elderly: complexities of a common problem. Clin Dermatol. 2011; 29: 37–42.
  11. Ali S.M., Yosipovitch G. Skin pH: from basic science to basic skin care. Acta Derm Venereol. 2013; 93: 261–7.
  12. Rosso J.D., Zeichner J., Alexis A., Cohen D., Berson D. Understanding the epidermal barrier in healthy and compromised skin: clinically relevant information for the dermatology practitioner: proceedings of an expert panel roundtable meeting. J. Clin. Aesthet Dermatol. 2016; 9: 2–8.
  13. Presland R.B., Kuechle M.K., Lewis S.P., Fleckman P., Dale B.A. Regulated expression of human filaggrin in keratinocytes results in cytoskeletal disruption, loss of cell–cell adhesion, and cell cycle arrest. Experimental cell research. 2001; 270 (2): 199–213. DOI: 10.1006/excr.2001.5348
  14. Drislane C., Irvine A.D. The role of filaggrin in atopic dermatitis and allergic disease. Ann Allergy Asthma Immunol. 2020; 124 (1): 36–43. DOI: 10.1016/j.anai.2019.10.008.
  15. Круглова Л.С., Переверзина Н.О. Филаггрин: от истории открытия до применения модуляторов филаггрина в клинической практике (обзор литературы). Медицинский алфавит. 2021; 27: 8–12. https://doi.org/10.33667/2078–5631–2021–27–8–12. [Kruglova L.S., Pereverzina N.O. Filaggrin: from the history of discovery to the use of filaggrin modulators in clinical practice (literature review). Medicinskij alfavit. 2021; 27: 8–12 (in Russian)].
  16. Kuechle M.K., Predd H.M., Fleckman P., Dale B.A., Presland R.B. Caspase-14, a keratinocyte specific caspase: MRNA splice variants and expression pattern in embryonic and adult mouse. Cell Death Differentiation. 2001; 8: 868–70.
  17. Pearton D.J., Nirunsuksiri W., Rehemtulla A., Lewis S.P., Presland R.B., Dale B.A. Proprotein convertase expression and localization in epidermis: Evidence for multiple roles and substrates. Experimental Dermatology. 2001; 10: 193–203.
  18. Alef T., Torres S., Hausser I., Metze D., Türsen Ü., Lestringant G. G., Hennies H. C. Ichthyosis, follicular atrophoderma, and hypotrichosis caused by mutations in ST14 is associated with impaired profilaggrin processing. J. of Investigative Dermatology. 2009; 129: 862–9.
  19. Kobiela A., Hovhannisyan L., Jurkowska P., de la Serna J.B., Bogucka A., Deptuła M., Paul A.A., Panek K., Czechowska E., Rychłowski M., Królicka A., Zieliński J., Gabrielsson S., Pikuła M., Trzeciak M., Ogg G.S., Gutowska–Owsiak D. Excess filaggrin in keratinocytes is removed by extracellular vesicles to prevent premature death and this mechanism can be hijacked by Staphylococcus aureus in a TLR2–dependent fashion. J Extracell Vesicles. 2023; 12 (6): e12335. DOI: 10.1002/jev2.12335.
  20. Baxter A.A., Phan T.K., Hanssen E., Liem M., Hulett M.D., Mathivanan S., Poon I.K.H.. Analysis of extracellular vesicles generated from monocytes under conditions of lytic cell death. Sci Rep. 2019; 9 (1): 7538. DOI: 10.1038/s41598–019–44021–9.
  21. Loden M., Maibach H. I. Treatment of Dry Skin Syndrome. Springer–Verlag Berlin Heidelberg. 2012; 592.
  22. Тамразова О.Б., Касьянова А.Н., Заплатников А.Л. Особенности ухода за кожей при дерматозах у детей раннего возраста. РМЖ. Медицинское обозрение. 2018; 1 (2): 80–4. [Tamrazova O.B., Kas'yanova A.N., Zaplatnikov A.L. Features of skin care for dermatoses in young children. RMZH. Medicinskoe obozrenie. 2018; 1 (2): 80–4 (in Russian)].
  23. Scott I.R., Harding C.R.. Filaggrin breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment. Developmental biology. 1986; 115 (1): 84–92. DOI: 10.1016/0012–1606(86)90230–7
  24. Miajlovic H., Fallon P.G., Irvine A.D., Foster T.J. Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol. 2010; 126 (6): 1184–90. e3. DOI: 10.1016/j.jaci.2010.09.015.
  25. Kezic S., O'Regan G.M., Yau N., Sandilands A., Chen H., Campbell L.E., Kroboth K., Watson R., Rowland M., McLean W.H., Irvine A.D. Levels of filaggrin degradation products are influenced by both filaggrin genotype and atopic dermatitis severity. Allergy. 2011; 66 (7): 934–40. DOI: 10.1111/j.1398–9995.2010.02540.x.
  26. Hirasawa Y., Takai T., Nakamura T., Mitsuishi K., Gunawan H., Suto H., Ogawa T., Wang Х.L., Ikeda S., Okumura K., Ogawa H. Staphylococcus aureus extracellular protease causes epidermal barrier dysfunction. Journal of Investigative Dermatology. 2010; 130: 614–7.
  27. Son E.D., Kim H.J., Park T., Shin K., Bae I.H., Lim K.M., Cho E.G., Lee T.R. Staphylococcus aureus inhibits terminal differentiation of normal human keratinocytes by stimulating interleukin-6 secretion. J. of Dermatological Science. 2014; 74: 64–71.
  28. Jarrett R., Salio M., Lloyd–Lavery A., Subramaniam S., Bourgeois E., Archer C., Cheung K. L., Hardman C., Chandler D., Salimi M., Gutowska–Owsiak D., de la Serna J. B., Fallon P. G., Jolin H., Mckenzie A., Dziembowski A., Podobas E. I., Bal W., Johnson D., Moody D. B., Ogg, G. Filaggrin inhibits generation of CD1a neolipid antigens by house dust mite–derived phospholipase. Science translational medicine. 2016; 8 (325): 325ra18. doi:10.1126/scitranslmed.aad6833
  29. Irvine A.D., McLean W.H. Breaking the (un)sound barrier: filaggrin is a major gene for atopic dermatitis. J. Invest Dermatol. 2006; 126 (6): 1200–2. DOI: 10.1038/sj.jid.5700365.
  30. Sandilands A., Terron–Kwiatkowski A., Hull P.R., O'Regan G.M., Clayton T.H., Watson R.M., Carrick T., Evans A.T., Liao H., Zhao Y., Campbell L.E., Schmuth M., Gruber R., Janecke A.R., Elias P.M., van Steensel M.A., Nagtzaam I., van Geel M., Steijlen P.M., Munro C.S., Bradley D.G., Palmer C.N., Smith F.J., McLean W.H., Irvine A.D. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet. 2007; 39 (5): 650–4. DOI: 10.1038/ng2020.
  31. Cárdenas G.V., Iturriaga C., Hernández C.D., Tejos–Bravo M., Pérez–Mateluna G., Cabalin C., Urzúa M., Venegas–Salas L.F., Fraga J.P., Rebolledo B., Poli M.C., Repetto G.M., Casanello P., Castro–Rodriguez J.A., Borzutzky A. Prevalence of filaggrin loss–of–function variants in Chilean population with and without atopic dermatitis. Int J. Dermatol. 2022; 61 (3): 310–5. DOI: 10.1111/ijd.15887.
  32. Chen S., Francioli L.C., Goodrich J.K., Collins R.L., Kanai M., Wang Q., Alföldi J., Watts N.A., Vittal C., Gauthier L.D., Poterba T., Wilson M.W., Tarasova Y., Phu W., Yohannes M.T., Koenig Z., Farjoun Y., Banks E., Donnelly S., Gabriel S., Gupta N., Ferriera S., Tolonen C., Novod S., Bergelson L., Roazen L., Ruano-Rubio V., Covarrubias M., Llanwarne C., Petrillo N., Wade G., Jeandet T., Munshi R., Tibbetts K., gnomAD Project Consortium, O’Donnell-Luria A., Solomonson M., Seed C., Martin A.R., Talkowski M.E., Heidi Rehm L., Daly M.J., Tiao G., Neale B.M., MacArthur D.G., Karczewski K.J. A genome-wide mutational constraint map quantified from variation in 76,156 human genomes. bioRxiv. 2023. DOI: https://doi.org/10.1101/2022.03.20.485034
  33. Margolis D.J., Mitra N., Wubbenhorst B., D'Andrea K., Kraya A.A., Hoffstad O., Shah S., Nathanson K.L.. Association of Filaggrin Loss–of–Function Variants With Race in Children With Atopic Dermatitis. JAMA Dermatol. 2019; 155 (11): 1269–76. DOI: 10.1001/jamadermatol.2019.1946.
  34. Margolis D.J., Mitra N., Gochnauer H., Wubbenhorst B., D'Andrea K., Kraya A., Hoffstad O., Gupta J., Kim B., Yan A., Fuxench Z.C., Nathanson K.L. Uncommon Filaggrin Variants Are Associated with Persistent Atopic Dermatitis in African Americans. J. Invest Dermatol. 2018; 138 (7): 1501–6. DOI: 10.1016/j.jid.2018.01.029.
  35. Nomura T., Sandilands A., Akiyama M., Liao H., Evans A.T., Sakai K., Ota M., Sugiura H., Yamamoto K., Sato H., Palmer C.N., Smith F.J., McLean W.H., Shimizu H. Unique mutations in the filaggrin gene in Japanese patients with ichthyosis vulgaris and atopic dermatitis. J. Allergy Clin. Immunol. 2007; 119 (2): 434–40. DOI: 10.1016/j.jaci.2006.12.646.
  36. Bieber T. Atopic dermatitis 2.0: from the clinical phenotype to the molecular taxonomy and stratified medicine. Allergy. 2012; 67 (12): 1475–82. DOI: 10.1111/all.12049.
  37. Winge M.C., Bilcha K.D., Liedén A., Shibeshi D., Sandilands A., Wahlgren C.F., McLean W.H., Nordenskjöld M., Bradley M. Novel filaggrin mutation but no other loss–of–function variants found in Ethiopian patients with atopic dermatitis. Br. J. Dermatol. 2011; 165 (5): 1074–80. DOI: 10.1111/j.1365–2133.2011.10475.x.
  38. Hoffjan S., Stemmler S. On the role of the epidermal differentiation complex in ichthyosis vulgaris, atopic dermatitis and psoriasis. Br. J. Dermatol. 2007; 157 (3): 441–9. DOI: 10.1111/j.1365–2133.2007.07999.x.
  39. Latendorf T., Gerstel U., Wu Z., Bartels J., Becker A., Tholey A., Schröder J.M. Cationic Intrinsically Disordered Antimicrobial Peptides (CIDAMPs) Represent a New Paradigm of Innate Defense with a Potential for Novel Anti–Infectives. Sci Rep. 2019; 9 (1): 3331. DOI: 10.1038/s41598–019–39219–w.
  40. Gerstel U., Latendorf T., Bartels J., Becker A., Tholey A., Schröder J.M.. Hornerin contains a Linked Series of Ribosome–Targeting Peptide Antibiotics. Sci Rep. 2018; 8 (1): 16158. DOI: 10.1038/s41598–018–34467–8.
  41. Ghada A., Rasheed Z., Salama R.H., Salem T., Ahmed A.A., Zedan K., El-Moniem A.A., Elkholy M. A.A., Ahmad A., Alzolibani A.A. Filaggrin, major basic protein and leukotriene B4: Biomarkers for adult patients of bronchial asthma, atopic dermatitis and allergic rhinitis. Intractable Rare Dis Res. 2018; 7 (4): 264–70. DOI:10.5582/irdr.2018.01111
  42. Rasheed Z., Zedan K., Saif G.B., Salama R.H., Salem T., Ahmed A.A., El–Moniem A.A., Elkholy M.A.A., Al Robaee A.A., Alzolibani A.A. Markers of atopic dermatitis, allergic rhinitis and bronchial asthma in pediatric patients: correlation with filaggrin, eosinophil major basic protein and immunoglobulin E. Clin Mol Allergy. 2018; 16: 23. DOI: 10.1186/s12948–018–0102–y.
  43. Кандрашкина Ю.А., Орлова Е.А., Левашова О.А., Виноградова О.П., Костина Е.М. Изучение роли филаггрина в патогенезе атопического дерматита при беременности. Сибирское медицинское обозрение. 2022; 1 (133): 45–50. [Kandrashkina Y.A., Orlova E.A., Levashova O.A., Vinogradova O.P., Kostina E.M. Studying the role of filaggrin in the pathogenesis of atopic dermatitis during pregnancy. Sibirskoe medicinskoe obozrenie. 2022; 1 (133): 45–50 (in Russian)].
  44. Garcia-Obregon S., Azkargorta M., Seijas I., Pilar-Orive J., Borrego F., Elortza F., Boyano M. D., Astigarraga I. Identification of a panel of serum protein markers in early stage of sepsis and its validation in a cohort of patients. J. of Microbiology, Immunology and Infection. 2018; 51: 465–72.