МОЛЕКУЛЯРНО-КЛЕТОЧНЫЕ МЕХАНИЗМЫ БОЛЕЗНИ АЛЬЦГЕЙМЕРА

DOI: https://doi.org/None

М.А. Пальцев (1), доктор медицинских наук, академик РАН, профессор, В.О. Полякова (2,3), доктор биологических наук, профессор, Н.С. Линькова (2,4,5), доктор биологических наук, Е.М. Пальцева6, доктор медицинских наук, профессор, Т.В. Кветная (2), доктор биологических наук, профессор, В.А. Зуев (2), И.М. Кветной (2,3), доктор медицинских наук, профессор, В.В. Попучиев (7), доктор медицинских наук 1 -Президиум Российской академии наук, Российская Федерация, 199911, Москва, Ленинский просп., д. 14; 2 -Санкт-Петербургский институт биорегуляции и геронтологии, Российская Федерация, 197110, Санкт-Петербург, проспект Динамо, д. 3; 3 -Научно-исследовательский институт акушерства, гинекологии и репродуктологии им. Д.О. Отта, Российская Федерация, 199034, Санкт-Петербург, Менделеевская линия, д. 3; 4 -Санкт-Петербургский политехнический университет Петра Великого, Российская Федерация, 195251, Санкт-Петербург, ул. Политехническая, д. 29; 5 -Институт физиологии им. И.П. Павлова РАН, Российская Федерация, 199034, Санкт-Петербург, наб. Макарова, д. 6; 6 -Российский научный центр хирургии им. акад. Б.В. Петровского, Российская Федерация, 119991, Москва, ГСП-1, Абрикосовский переулок, д. 2; 7 -Медицинский радиологический научный центр им. А.Ф. Цыба – филиал федерального государственного бюджетного учреждения «Национальный медицинский исследовательский радиологический центр» Минздрава России, Российская Федерация, 249036, Калужская область, Обнинск, ул. Королева, 4 E-mail: [email protected]

Болезнь Альцгеймера является социально значимым нейродегенеративным заболеванием лиц пожилого возраста, занимающим среди соматической патологии 6-е место по показателю смертности. Молекулярные механизмы болезни Альцгеймера до конца не изучены, а ее терапия остается низкоэффективной. Целью обзора являются обобщение и систематизация данных, связанных с поиском вероятных таргетных мишеней для лечения этого заболевания. Рассматривается роль гена аполипопротеина Е как генетического фактора риска развития спорадической формы болезни Альцгеймера, обсуждается вклад τ-протеина и предшественника β-амилоида в патогенез этого заболевания. Рассматриваются кальциевая гипотеза нарушения межнейронального сигналинга, роль глиальных клеток в продукции различных сигнальных молекул – возможных маркеров болезни Альцгеймера, обсуждается роль патологии митохондрий в развитии нейродегенеративных заболеваний.
Ключевые слова: 
болезнь Альцгеймера, гипотеза амилоидного каскада, τ-протеин, глия, митохондриальная дисфункция, старение
Для цитирования: 
Пальцев М.А., Полякова В.О., Линькова Н.С., Пальцева Е.М., Кветная Т.В., Зуев В.А., Кветной И.М., Попучиев В.В. МОЛЕКУЛЯРНО-КЛЕТОЧНЫЕ МЕХАНИЗМЫ БОЛЕЗНИ АЛЬЦГЕЙМЕРА. Молекулярная медицина, 2016; (6): -

Список литературы: 
  1. Huang Y., Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012; 148: 1204–22.
  2. Karch C.M., Jeng A.T., Nowotny P., Cady J., Cruchaga C., Goate A.M. Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brain. PLoS ONE. 2012; 7: e50976.
  3. Anand R., Gill K.D., Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology. 2014; 76: 27–50.
  4. Cacquevel M., Aeschbach L., Houacine J., Fraering P.C. Alzheimer’s disease-linked mutations in presenilin-1 result in a drastic loss of activity in purified γ-secretase complexes. PLoS ONE. 2012; 7, e35133.
  5. Bateman R.J., Aisen P.S., de Strooper B., Fox, N.C., Lemere C.A., Ringman J.M., Salloway S., Sperling R.A., Windisch M., Xiong C. Autosonal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res. Ther. 2011; 3: 1–12.
  6. Lambert J.C., Ibrahim-Verbaas C.A., Harold D., Naj A.C., Sims R., Bellenguez C., Jun G., Destefano A.L., Bis J.C., Beecham G.W. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 2013; 45: 1452–58.
  7. Selfridge J.E., Lezi E., Lu J., Swerdlow R.H. Role of mitochondrial homeostasis and dynamics in Alzheimer’s disease. Neurobiol. Dis. 2013; 51: 3–12.
  8. Santos C.R.A., Cardoso I., Goncalves I. Key enzymes and proteins in amyloid-β production and clearance. In Alzheimer’s Disease Pathogenesis–Core Concepts, Shifting Paradigms and Therapeutic Targets. de la Monte S., Ed.; In Tech: Shanghai, China. 2011; 702 p.
  9. Bertram L., Tanzi R.E. The genetics of Alzheimer’s disease. Prog. Mol. Biol. Transl. Sci. 2012; 107: 79–100.
  10. Mahley R.W., Nathan B.P., Pitas R.E. Apolipoprotein E. Structure, function, and possible roles in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 1996; 777: 139–45.
  11. Hollingworth P., Harold D., Sims R., Gerrish A., Lambert J.C., Carrasquillo M.M., Abraham R., Hamshere M.L., Pahwa J.S., Moskvina V. et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat. Genet. 2011; 43: 429–35.
  12. Kayed R., Lasagna-Reeves C.A. Molecular mechanisms of amyloid oligomers toxicity J. AlzheimersDis. 2013: 33: 67–78.
  13. Gandhi S., Wood N.W. Genome-wide association studies: The key to unlocking neurodegeneration? Nat. Neurosci. 2010 13: 789–94.
  14. Chapuis J., Hansmannel F., Gistelinck M., Mounier A., van Cauwenberghe C., Kolen, K.V., Geller F., Sottejeau Y., Harold D., Dourlen P. et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating Tau pathology. Mol. Psychiatry 2013; 18: 1225–34.
  15. Griciuc A., Serrano-Pozo A., Parrado A.R., Lesinski A.N., Asselin C.N., Mullin K., Hooli B., Choi S.H., Hyman B.T., Tanzi R.E. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid β. Neuron. 2013; 78: 631–43.
  16. Guerreiro R., Wojtas A., Bras J., Carrsquillo M., Rogaeva E., Majounie E., Cruchaga C., Sassi C., Kauwe J.S., Younkin S., et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 2013; 368: 117–27.
  17. Harold D., Abraham R. Haooingworth P., Sims R., Gerrish A., Hamshere M.L., Pahwa J.S., Moskvina V., Dowzell K., Williams A. et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat. Genet. 2009; 41: 1088–93.
  18. De Strooper B. Proteases and proteolysis in Alzheimer disease: A multifactorial view on the disease process. Physiol. Rev. 2010; 90: 465–94.
  19. Morley J.E., Farr S.A. The role of amyloid-β in the regulation of memory. Biochem. Pharm. 2014; 88: 479–85.
  20. Pei J.J., Hugon J. mTOR-dependent signalling in Alzheimer’s disease. J. Cell. Mol. Med. 2008; 12: 2525–32.
  21. Hardy J., Selkoe D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2012; 297: 353–6.
  22. Giannakopoulos P., Herrmann F.R., Bussiere T., Bouras C., Kovar E., Perl D.P., Mossison J.H., Gold G., Hof P.R. Tangle and neuronnumbers, but notamyloid load, predict cognitive status in Alzheimer’s disease. Neurology. 2003; 60: 1495–500.
  23. Barry A.E., Klyubin I., McDonald J.M., Mably A.J., Farrell M.A., Scott M., Walsh D.M., Rowan M.J. Alzheimer’s disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J. Neurosci. 2011; 31: 7259–63.
  24. Selkoe D.J. Alzheimer’s disease: Genes, proteins, and therapy. Physiol. Rev. 2001; 81: 741–66.
  25. Mosher K.I., Wyss-Coray T. Microglial dysfunction in brain aging and Alzheimer’s disease. Biochem. Pharm. 2014; 88: 594–604.
  26. Papadopoulos M.C., Verkman A.S. Aquaporin water channels in the nervous system. Nat. Rev. Neurosci. 2013; 14: 265–77.
  27. Wilkins H.M., Swerdlow R.H. Relationships Between Mitochondria and Neuroinflammation: Implications for Alzheimer’s Disease. Curr Top Med. Chem. 2016; 16 (8): 849–57.
  28. Lasagna-Reeves C.A., Castillo-Carranza D.L., Sengupta U., Guerrero-Munoz M.J., Kiritoshi T., Neugebauer V., Jackson G.R., Kayed R. Alzheimer brain-derived Tau oligomers propagate pathology from endogenous Tau. Sci. Rep. 2012; 2: 700. doi: 10.1038/srep00700.
  29. Castellani R.J., Perry G. The complexities of the pathology–pathogenesis relationship in Alzheimer disease. Biochem. Pharm. 2014; 88: 671–6.
  30. Farlow M., Arnold S.E., van Dyck C.H., Aisen P.S., Snider B.J., Porsteinsson A.P., Friedrich S., Dean R.A., Gonzales C., Sethuraman G. et al. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement. 2012; 8: 261–71.
  31. Goure W.F., Krafft G.A., Jerecic J., Hefti F. Targeting the proper amyloid-β neuronal toxins: A path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res. Ther. 2014; 6: 42–8.
  32. Imtiaz B., Tolppanen A.M., Kivipelto M., Soininen H. Future direction in Alzheimer’s disease from risk factors to prevention. Biochem. Pharm. 2014; 88: 661–70.
  33. Morawe T., Hiebel C., Kern A., Beh C. Protein homeostasis, aging and Alzheimer’s disease. Mol. Neurobiol. 2012; 46: 41–54.
  34. Zhang H., Wu L., Pchitskaya E., Zakharova O., Saito T., Saido T., Bezprozvanny I. Neuronal Store-Operated Calcium Entry and Mushroom Spine Loss in Amyloid Precursor Protein Knock-In Mouse Model of Alzheimer’s Disease. J. Neurosci. 2015; 35 (39): 13275–86.
  35. Ke Y.D., Suchowerska A.K., van der Hoven J., de Silva D.M., Wu C.W., van Eersel J., Ittner A., Ittner L.M. Lessons from Taudeficient mice. Int. J. AlzheimersDis. 2012; 873270. doi: 10.1155/2012/873270.
  36. Nagelhus E.A., Amiry-Moghaddam M., Bergersen L.H., Bjaalie J.G., Eriksson J., Gundersen V., Leergaard T.B., Morth J.P., Storm-Mathisen J., Trop R. et al. The glia doctorine: Addressing the role of glial cells in healthy brain ageing. Mech. Ageing Dev. 2013; 134: 449–59.
  37. Um J.W., Nygaard H.B., Heiss J.K., Kostylev M.A., Stagi M., Vortmeyer A., Wisniewski T., Gunther E.C., Strittmatter S.M. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat. Neurosci. 2012; 15: 1227–35.
  38. Ziv Y., Ron N., Butovsky O., Landa G., Greenberg N., Cohen H., Kipnis J., Schwartz M. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat. Neurosci. 2006; 9: 268–75.
  39. Wisniewski T., Goni F. Immunotherapy for Alzheimer’s disease. Biochem. Pharm. 2014; 88: 499–507.
  40. Choi S.S., Lee H.J., Lim I., Satoh J., Kim S.U. Human astrocytes: Secretome profiles of cytokines and chemokines. PLoS ONE. 2014; 9: e92325.
  41. Muller U.C., Zheng H. Physiological functions of APP family proteins. ColdSpring Harb. Perspect. Med. 2012; 2 (2): a006288. doi: 10.1101/cshperspect.a006288.
  42. Urra H., Dufey E., Lisbona F., Rojas-Rivera D., Hetz C. When ER stress reaches a dead end. Biochim. Biophys. Acta. 2013; 1833: 3507–17.
  43. Vargova L., Sykova E. Astrocytes and extracellular matrix in extrasynaptic volume transmission. Philos. Trans. R. Soc. Lond. B 2014; 369 (1654): 20130608. doi: 10.1098/ rstb.2013.0608.
  44. Naj A.C., Jun G., Beecham G.W., Wang L.S., Vardarajan B.N., Buros J., Gallins P.J., Buxbaum J.D., Jarvik G.P., Crane P.K. Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat. Genet. 2011; 43: 436–41.
  45. Basak J.M., Verghese P.B, Yoon H., Kim J., Hotzman D.M. Low-density lipoprotein receptor represent an apolipoprotein E-independent pathway of Aβ uptake and degradation by astrocytes. J. Biol. Chem. 2012; 287: 13959–71.
  46. Denzer I., Münch G., Friedland K.Modulation of mitochondrial dysfunction in neurodegenerative diseases via activation of nuclear factor erythroid-2-related factor 2 by food-derived compounds. Pharm. Res. 2015: pii: S1043-6618(15)30160- 2. doi: 10.1016/j.phrs.2015.11.019.