ПЕПТИДНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ, ИМИТИРУЮЩИЕ ВНЕКЛЕТОЧНЫЙ МАТРИКС, – ПЕРСПЕКТИВНЫЙ СПОСОБ БИОФУНКЦИОНАЛИЗАЦИИ СЕРДЕЧНО-СОСУДИСТЫХ ИМПЛАНТАТОВ

DOI: https://doi.org/None

В.Г. Матвеева, кандидат медицинских наук, Л.В. Антонова, кандидат медицинских наук, О.Л. Барбараш, доктор медицинских наук, профессор, Л.С. Барбараш, профессор, академик РАН Научно-исследовательский институт комплексных проблем сердечно-сосудистых заболеваний, Российская Федерация, 650002, Кемерово, Сосновый бульвар, д. 6 E-mail: [email protected]

Скорейшая эндотелизация внутренней поверхности сердечно-сосудистых имплантатов – важное условие их дальнейшего успешного функционирования в организме. Биофункционализация синтетических материалов позволяет создать биомиметические поверхности путем инкорпорирования биоактивных молекул, способных генерировать специфический клеточный ответ. Данный обзор посвящен перспективам и проблемам синтеза различных видов пептидных последовательностей, имитирующих структуру и функцию внеклеточного матрикса, для ускоренного и направленного привлечения эндотелиальных клеток к поверхностям синтетических материалов. Уделено внимание способам иммобилизации пептидов к поверхностям полимеров, позволяющим сохранять их биоактивные свойства. Использование пептидных последовательностей для биофункционализации синтетических материалов с целью скорейшей эндотелизации in situ – перспективное направление в создании сердечно-сосудистых имплантатов.
Ключевые слова: 
биофункционализация материалов, пептидные последовательности, эндотелизация
Для цитирования: 
Матвеева В.Г., Антонова Л.В., Барбараш О.Л., Барбараш Л.С. ПЕПТИДНЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ, ИМИТИРУЮЩИЕ ВНЕКЛЕТОЧНЫЙ МАТРИКС, – ПЕРСПЕКТИВНЫЙ СПОСОБ БИОФУНКЦИОНАЛИЗАЦИИ СЕРДЕЧНО-СОСУДИСТЫХ ИМПЛАНТАТОВ. Молекулярная медицина, 2016; (6): -

Список литературы: 
  1. Bordenave L., Menu P., Baquey C. Developments towards tissue-engineered, smalldiameter arterial substitutes. Exp. Rev. Med. Dev. 2008; 5 (3): 337–47.
  2. Старикова Э.А., Лебедева А.М., Бурова Л.А., Фрейдлин И.С. Изменения функциональной активности эндотелиальных клеток под влиянием лизата. Цитология. 2012; 54 (1): 49–57. [Starikova E.A., Lebedeva A.M., Burova L.A., Freidlin I.S. Changes in functional activity of endothelial cells under the lysate influence. Cytology. 2012; 54 (1): 49–57 (in Russian)]
  3. Матвеева В.Г., Головкин А.С., Антонова Л.В. и др. Влияние продуктов механического повреждения миокарда, LPS и их сочетания на эндотелиальные клетки из пупочной вены человека. Мед. Иммуно- логия. 2014; 6 (4): 361–6. [Matveeva V.G., Golovkin A.S., Antonova L.V. et al. Influence ofmechanical damage myocardium products, LPS and there combinations on human umbilical vein endothelial cells. Med. Immunology. 2014; 6 (4): 361–6 (in Russian)]
  4. Ярилин, А. А. Иммунология. М. ГЭОТАР- Медиа, 2010. 752 с. [Yarilin A.A. Immunology. M. GEOTAR-Media, 2010. 752 (in Russian)]
  5. Hoenig M.R., Campbell G.R., Campbell J.H. Vascular grafts and the endothelium. Endot. 2006; 13: 385–401.
  6. McAllister T. N., Maruszewski M., Garrido S. A. et al. Effectiveness of haemodialysis access with an autologous tissueengineered vascular graft: a multicentre cohort study. The Lancet 2009; 373 (9673): 1440–6.
  7. Aoki J.; Serruys P. W.; van Beusekom H. et al. Endothelial progenitor cell capture by stents coated with antibody against CD34: the HEALING-FIM (Healthy Endothelial Accelerated Lining Inhibits Neointimal Growth-First In Man) Registry. J. Am. Coll. Cardiol. 2005; 45: 1574–9.
  8. Rashid S.T., Fuller B., Hamilton G., Seifalian A.M. Tissue engineering of a hybrid bypass graft for coronary and lower limb bypass surgery. FASEB J. 2008; 6: 2084–9.
  9. de Mel A., Punshon G., Ramesh B. et al. In situ endothelialization potential of a biofunctionalised nanocomposite biomaterial-based small diameter bypass graft. Bio-Med. Mater. Engin. 2009; 19 (4–5): 317–31.
  10. Kammerer P. W., Heller M., Brieger J. et al. Immobilisation of linear and cyclic RGD-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation. Eur.Cells & Mater. 2011; 21: 364–72.
  11. Melero-Martin J.M., Khan Z.A., Picard A. et al. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood. 2007; 109 (11): 4761–8.
  12. Jevon M., Dorling A., Hornick P. I. Progenitor cells and vascular disease. Cell Prolif. 2008, 41: 146–64.
  13. Krenning G, Dankers P.Y, Jovanovic D. et al. Efficient differentiation of CD14+ monocytic cells into endothelial cells on degradable biomaterials. Biomat. 2007; 28: 1470–9.
  14. Fujiyama S., Amano K., Uehira K. et al. Bone marrow monocyte lineage cells adhere on injured endothelium in a monocyte chemoattractant protein-1-dependent manner and accelerate reendothelialization as endothelial progenitor cells. Circ. Res. 2003; 93 (10): 980–9.
  15. Stevens M.M., George J.H. Exploring and Engineering the Cell Surface Interface. Sci. 2005; 310: 1135–8.
  16. Watt F.M.; Hogan B.L. Out of Eden: stem cells and their niches. Sci. 2000; 287: 1427–30.
  17. Kleinman H.K., Philp D., Hoffman M.P. Role of the extracellular matrix in morphogenesis. Curr. Opin. Biotechnol. 2003; 14: 526–32.
  18. Rosso F., Giordano A., Barbarisi M., Barbarisi A. From cell-ECM interactions to tissue engineering. J. Cell. Physiol. 2004; 199: 174–80.
  19. Hynes R.O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992; 69: 11–25.
  20. Xiao Y., Truskey G.A. Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys. J. 1996; 71: 2869–84.
  21. Humphries J.D., Byron A., Humphries M.J. Integrin ligands at a glance. J. Cell Sci. 2006; 119: 3901–3.
  22. Ruegg C., Dormond O., Mariotti A. Endothelial cell integrins and COX-2: mediators and therapeutic targets of tumor angiogenesis. Biochim. Biophys. Acta. 2004; 1654: 51–67.
  23. Urbich C., Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ. Res. 2004; 95: 343–53.
  24. Chavakis E.; Aicher A.; Heeschen C.E. et al. Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J. Exp. Med. 2005; 201: 63–72.
  25. Rodenberg E.J., Pavalko F.M. Peptides derived from fibronectin type III connecting segments promote endothelial cell adhesion but not platelet adhesion: implications in tissue-engineered vascular grafts. Tis. Eng. 2007; 13: 2653–66.
  26. Hubbell J.A., Massia S.P., Desai N.P., Drumheller P.D. Endothelial cell-selective materials for tissue engineering in the vascular graft via a new receptor. Biotechnol. (N.Y.) 1991; 9: 568–72.
  27. Ochsenhirt S.E., Kokkoli E., McCarthy J.B., Tirrell M. Effect of RGD secondary structure and the synergy site PHSRN on cell adhesion, spreading and specific integrin engagement. Biomat. 2006; 27: 3863–74.
  28. Pierschbacher M., Hayman E.G., Ruoslahti E. Synthetic peptide with cell attachment activity of fibronectin. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 1224–7.
  29. Tashiro K., Sephel G.C., Weeks B., et al. A synthetic peptide containing the IKVAV sequence from the A chain of laminin mediates cell attachment, migration, and neurite outgrowth. J. Biol. Chem. 1989; 264: 16174–82.
  30. Weber L.M., Hayda K.N., Haskins K., Anseth K.S. The effects of cell-matrix interactions on encapsulated beta-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomat. 2007; 28: 3004–11.
  31. Hsu S.H., Chu W.P., Lin Y.S. et al. The effect of an RGD-containing fusion protein CBDRGD in promoting cellular adhesion. J. Biotech. 2004; 111: 143–54.
  32. Reyes C.D., Garcia A.J. Engineering integrin-specific surfaces with a triple-helical collagen-mimetic peptide. J. Biomed. Mater. Res. 2003; 65A: 511–23.
  33. Krijgsman B., Seifalian A.M., Salacinski H.J. et al. An assessment of covalent grafting of RGD peptides to the surface of a compliant poly(carbonate-urea)urethane vascular conduit versus conventional biological coatings: its role in enhancing cellular retention. Tis. Eng. 2002; 8: 673–80.
  34. Reyes C.D., Petrie T.A., Burns K.L. et al. Biomolecular surface coating to enhance orthopaedic tissue healing and integration. J. Biomat. 2007; 28: 3228–35.
  35. Heilshorn S.C., DiZio K.A., Welsh E.R., Tirrell D.A. Endothelial cell adhesion to the fibronectin CS5 domain in artificial extracellular matrix proteins. Biomat. 2003; 24: 4245–52.
  36. Heilshorn S.C., Liu J.C., Tirrell D.A. Cell-binding domain context affects cell behavior on engineered proteins. Biomacromol. 2005; 6: 318–23.
  37. Liu J.C., Heilshorn S.C., Tirrell D.A. Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains. Biomacromol 2004; 5: 497–504.
  38. Blindt R., Vogt F., Astafieva I., et al. A novel drug-eluting stent coated with an integrinbinding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells. J. Amer. College of Cardiol. 2006; 47 (9): 1786–95.
  39. Meinhart J.G., Schense J.C., Schima H. et al. Enhanced endothelial cell retention on shear-stressed synthetic vascular grafts precoated with RGD-cross-linked fibrin. J. Tissue Engin. 2005; 11 (5–6): 887–95.
  40. Gauvreau V., Laroche G. Micropattern printing of adhesion, spreading, and migration peptides on poly (tetrafluoroethylene) films to promote endothelialization. Bioconjugate Chem. 2005; 16: 1088–97.
  41. Jiang X., Chai C., Zhang Y. et al. Surfaceimmobilization of adhesion peptides on substrate for ex vivo expansion of cryopreserved umbilical cord blood CD34+ cells. Biomat. 2006; 27: 2723–32.
  42. McMillan R., Meeks B., Bensebaa F. et al. Cell adhesion peptide modification of gold-coated polyurethanes for vascular endothelial cell adhesion. J Biomed. Mater. Res. 2001; 54: 272–83.
  43. Santiago L.Y., Nowak R.W., Rubin P.J., Marra K.G. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomat. 2006; 27 (15): 2962–9.
  44. Jun H.W.; West J.L. Modification of polyurethaneurea with PEG and YIGSR peptide to enhance endothelialization without platelet adhesion. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2005; 72B: 131–9.
  45. Taite L.J., Yang P., Jun H.W., West J.L. Nitric oxide-releasing polyurethane–PEG copolymer containing the YIGSR peptide promotes endothelialization with decreased platelet adhesion. J. Biomed. Mat. Res. 2008; Part B: Appl. Biomater. 84B (1): 108–16.
  46. Li C., Hill A., Imran M. In vitro and in vivo studies of ePTFE vascular grafts treated with P15 peptide. J. Biomater. Sci. Polym. Ed. 2005; 16 (7): 875–91.
  47. Plouffe B.D., Njoka D.N., Harris J. et al. Peptide-Mediated Selective Adhesion of Smooth Muscle and Endothelial Cells in Microfluidic Shear Flow. Langmuir. 2007; 23 (9): 5050–5.
  48. Veiseh M., Veiseh O., Martin M.C. et al. Short Peptides Enhance Single Cell Adhesion and Viability on Microarrays. Langmuir 2007; 23: 4472–9.
  49. Lin X., Takahashi K., Liu Y., Zamora P.O. Enhancement of cell attachment and tissue integration by a IKVAV containing multidomain peptide. Biochim. Biophys. Acta 2006; 1760: 1403–10.
  50. Kojima N., Matsuo T., Sakai Y. Effect of seeding using an avidin-biotin binding system on the attachment of periodontal ligament fibroblasts to nanohydroxyapatit scaffolds: three-dimensional culture. Biomater. 2006; 27: 4904–10.
  51. Bhat V.D., Truskey G.A., Reichert W.M. Using avidin-mediated binding to enhance initial endothelial cell attachment and spreading. J. Biomed. Mat. Res. 1998; 40: 57–65.
  52. Hasegawa T., Okada K., Takano Y. et al. Autologous fibrin-coated small-caliber vascular prostheses improve antithrombogenicity by reducing immunologic response. J. Thorac. CardioVasc. Surg. 2007; 133: 1268–76.
  53. Alobaid N., Salacinski H.J., Sales K.M. et al. Nanocomposite containing bioactive peptides promote endothelialisation by circulating progenitor cells: An in vitro evaluation. Eur. J. Vasc. Endovas. Surg. 2006; 32: 76–83.
  54. Kidane A.G., Punshon G., Salacinski H.J. et al. Incorporation of a lauric acid-conjugated GRGDS peptide directly into the matrix of a poly (carbonateurea) urethane polymer for use in cardiovascular bypass graft applications. J. Biomed. Mater. Res. 2006; A 79: 606–17.
  55. Salacinski H.J., Hamilton G., Seifalian A.M. Surface functionalization and grafting of heparin and/or RGD by an aqueousbased process to a poly (carbonate-urea) urethane cardiovascular graft for cellular engineering applications. J. Biomed. Mater. Res. 2003; A 66: 688–97.
  56. Tiwari A., Kidane A., Salacinski H. et al. Improving endothelial cell retention for single stage seeding of prosthetic grafts: use of polymer sequences of arginine-glycine-aspartate. Eur. J. Vasc. Endovasc. Surg. 2003; 25: 325–29.
  57. Chung T.W, Yang M.G, Liu D.Z et al. Enhancing growth human endothelial cells on Arg-Gly-Asp (RGD) embedded poly (epsilon-caprolactone) (PCL) surface with nanometer scale of surface disturbance. J Biomed. Mater. Res. A. 2005; 72 (2): 213–9.
  58. Zheng W., Wang Z., Song L. et al. Endothelialization and patency of RGD-functionalized vascular grafts in a rabbit carotid artery model. Biomat. 2012; 33 (10): 2880–91.
  59. Gabriel M., van Nieuw Amerongen G.P., Van Hinsbergh V.W. et al. Direct grafting of RGD-motif-containing peptide on the surface of polycaprolactone films. J. Biomat. Sci. Ed. 2006; 17 (5): 567–77.
  60. Zheng W., Guan D., Teng Y. et al. Functionalization of PCL fibrous membrane with RGD peptide by a naturally occurring condensation reaction. Chin. Sci. Bull. 2014; 59 (22): 2776–84.
  61. Tang C., Kligman F., Larsen C.C. et al. Platelet and endothelial adhesion on fluorosurfactant polymers designed for vascular graft modification. J. Biomed. Mater. Res. 2009; A 88: 348–58.
  62. Conforti G., Zanetti A., Colella S., G. et al. Interaction of fibronectin with cultured human endothelial cells: characterization of the specific receptor. Blood 1989; 73: 1576–85.
  63. Larsen C.C., Kligman F., Tang C. et al. A biomimetic peptide fluorosurfactant polymer for endothelialization of ePTFE with limited platelet adhesion. Biomaterials. 2007; 28 (24): 3537–48.
  64. Mould A.P., Koper E.J., Byron A. et al. Mapping the ligand-binding pocket of integrin alpha5beta1 using a gain-of-function approach. Biochem. J. 2009; 424 (2): 179–89.
  65. Koivunen E., Wang B., Ruoslahti E. Isolation of a highly specific ligand for the alpha 5 beta 1 integrin from a phage display library. J. Cell. Biol. 1994; 124 (3): 373–80.
  66. Meyers S.R., Kenan D.J., Khoo X., Grinstaff M.W. A bioactive stent surface coating that promotes endothelialization while preventing platelet adhesion. Biomacromolecules. 2011; 12 (3): 533–9.
  67. Patel S., Tsang J., Harbers G.M. et al. Regulation of endothelial cell function by GRGDSP peptide grafted on interpenetrating polymers. J. Biomed. Mater. Res. A 2007; 83 (2): 423–33.
  68. Koivunen E., Wang B.C., Ruoslahti E. Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Bio-Technol. 1995; 13: 265–70.
  69. Pierschbacher M.D., Ruoslahti E. Influence of stereochemistry of the sequence Arg- Gly-Asp-Xaa on binding specificity in cell adhesion. J. Biol. Chem. 1987; 262: 17294–8.
  70. Cheng S., Craig W.S., Mullen D. et al. Design and synthesis of novel cyclic RGD-containing peptides as highly potent and selective integrin alpha IIb beta 3 antagonists. J. Med. Chem. 1994; 37: 1–8.
  71. Wilson C.J., Clegg R.E., Leavesley D.I., Pearcy M. Mediation of biomaterial–cell interactions by adsorbed proteins: A Review. J. Tis. Eng. 2005; 11: 1–18.
  72. Coyle C.H., Mendralla S., Lanasa S., Kader K.N. Endothelial cell seeding onto various biomaterials causes superoxide-induced cell death. J. Biomater. Appl. 2007; 1: 55–69.
  73. Hirano Y., Mooney D.J. Peptide and protein presenting materials for tissue engineering. Adv. Mater. 2004; 16: 17–25.
  74. Brewster L.P., Bufallino D., Ucuzian A., Greisler H.P. Growing A Living Blood Vessel: insights for the second hundred years. Biomat. 2007; 28: 5028–32.
  75. Collier J.H., Segura T. Evolving the use of peptides as biomaterials components. Biomat. 2011; 32: 4198–204.
  76. Dankers P.Y., Harmsen M.C., Brouwer L.A. et al. A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat. Mater. 2005; 4: 568–74.
  77. Kilian K.A., Mrksich M. Directing stem cell fate by controlling the affinity and density of ligand-receptor interactions at the biomaterials interface. Angew. Chem., Int. Ed. 2012; 51: 4891–5.
  78. Zorlutuna P., Annabi N., Camci-Unal G. et al. Microfabricated biomaterials for engineering 3D tissues. Adv. Mater. 2012; 24: 1782–804.
  79. Espeel P., Goethals F., Driessen F. et al. One-pot, additive-free preparation of functionalized polyurethanes via amine thiol–ene conjugation. Polym. Chem. 2013; 4: 2449–56.
  80. Tan M., Feng Y., Wang H. et al. Immobilized bioactive agents onto polyurethane surface with heparin and phosphorylcholine group. Macromol. Res. 2013; 21: 541–9.
  81. de Mel A., Ramesh B., Scurr D.J. et al. Fumed silica nanoparticle mediated biomimicry for optimal cell–material interactions for artificial organ development. Macromol. Biosci. 2014; 14 (3): 307–13.