Влияние постишемических физических нагрузок на клеточные ансамбли головного мозга при церебральной гипоперфузии

DOI: https://doi.org/10.29296/24999490-2021-05-01

В.В. Криштоп(1), Т.А. Румянцева(2), В.Г. Никонорова(3) 1-ФГАОУ ВО «Национальный исследовательский университет ИТМО», Российская Федерация, 191024, Санкт-Петербург, Ломоносова, д. 9; 2-ФГБОУ ВО «Ярославский государственный медицинский университет», Российская Федерация, 153000, Ярославль, Революционная улица, д. 5; 3-ФГБОУ ВО «Ивановская государственная сельскохозяйственная академия им. Д.К. Беляева», Российская Федерация, 153012, Иваново, ул. Советская, д. 45 E-mail: [email protected]

Церебральная гипоперфузия лежит в основе широкого ряда заболеваний: инсульта, болезни Альцгеймера, травмы головного мозга и др. Сосудистая деменция, являющаяся эквивалентом церебральной гипоперфузии – одно из наиболее распространенных когнитивных расстройств у пожилых людей после болезни Альцгеймера. Физическая нагрузка является неотъемлемым компонентом реабилитационных мероприятий при ишемическом инсульте и сосудистой деменции – широко распространенных, социально важных заболеваниях. Цель обзора – обобщить современные данные о клеточных механизмах, лежащих в основе влияния физических нагрузок вне парадигмы обогащенной среды, при экспериментальной церебральной гипоксии. Материалами послужили результаты соответствующих исследований отечественных и зарубежных авторов и собственные опубликованные данные за последние 30 лет, с 1990 по 2020 г. В статье обобщены современные данные, демонстрирующие влияние физической нагрузки при церебральной гипоперфузии преимущественно в хроническую фазу модели двусторонней окклюзии общих сонных артерий, как адекватной модели церебральной гипоперфузии. Рассмотрены следующие мишени физической нагрузки: нейрогенез, нейрональный апоптоз, нейротрофины, BDNF, IGF-I, VEGF, синаптофизин, NO-опосредованные эффекты, оксидантный стресс, ангиогенез, цереброваскулярную реактивность, структуры гематоэнцефалического барьера, эндотелий, лейкоциты острой фазы воспаления, астроциты, олигодендроглиоциты, фенотип микроглии.
Для цитирования: 
Криштоп В.В., Румянцева Т.А., Никонорова В.Г. Влияние постишемических физических нагрузок на клеточные ансамбли головного мозга при церебральной гипоперфузии. Молекулярная медицина, 2021; (5): -https://doi.org/10.29296/24999490-2021-05-01

Список литературы: 
  1. Cechetti F., Worm P.V., Elsner V.R., K. Bertoldi, Sanches E., Ben J., Siqueira I.R.,Netto C.A. Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat. Neurobiol Learn Mem. 2012; 1: 90–6. https://doi.org/10.1016/j.nlm.2011.09.008
  2. Huang C.X., Qiu X., Wang S., Wu H., Xia L., Li C., Gao Y., Zhang L., Xiu Y., Chao F., Tang Y. Exercise-induced changes of the capillaries in the cortex of middleaged rats. Neuroscience. 2013; 233: 139–45. https://doi.org/10.1016/j.neuroscience.2012.12.046
  3. Murrell C.J., Cotter J.D., Thomas K.N., Lucas S.J.E., Williams M.J.A, Ainslie P.N. Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise:effect of age and 12-week exercise training. Age (Dordr.). 2013; 35: 905–20. https://doi.org/10.1007/s11357-012-9414-x
  4. Lange-Asschenfeldt C., Kojda G. Alzheimer’s disease, cerebrovascular dysfunction and the benefits of e xercise: from vessels to neurons. Exp. Gerontol. 2008; 43: 499–504. https://doi.org/10.1016/j.exger.2008.04.002
  5. Ahlskog J.E. Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology. 2011; 77: 288–94. https://doi.org/10.1212/WNL.0b013e318225ab66
  6. Griesbach G.S., Hovda D.A., Gomez P.F. Exercise induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res. 2009; 1288: 105–15. https://doi.org/10.1016/j.brainres.2009.06.045.
  7. Neeper S.A., Gomez-Pinilla F., Choi J., Cotman C. Exercise and brain neurotrophins. Nature. 1995; 12; 373 (6510): 109. https://doi.org/10.1038/373109a0.
  8. Erickson K.I., Leckie R.L., Weinstein A.M. Physical activity, fitness, and gray matter volume. Neurobiol. 2014; 35: 2: 20–8. https://doi.org/10.1016/j.neurobiolaging.2014.03.034
  9. Loprinzi P.D., Herod S.M., Cardinal B.J, Noakes T.D. Physical activity and the brain: a review of this dynamic, bi-directional relationship. Brain Res. 2013; 1539: 95–104. https://doi.org/10.1016/j.brainres.2013.10.004
  10. Sahay A., Hen R. Adult hippocampal neurogenesis in depression. Nat. Neurosci. 2007; 10: 1110–5. https://doi.org/10.1038/nn1969
  11. Van Praag H., Kempermann G., Gage F.H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci. 1999; 2 (3): 266–70. https://doi.org/10.1038/6368.
  12. Choi D.H., Lee K.H., Lee J. Effect of exercise-induced neurogenesis on cognitive function deficit in a rat model of vascular dementia. Mol Med. Rep. 2016; 13: 2981–90. https://doi.org/10.3892/mmr.2016.4891
  13. Zhang Y., Zhang P., Shen X., Tian S., Wu Y., Zhu Y., Jia J., Wu J., Hu Y. Earlyexercise protects the blood-brain barrier from ischemic brain injury via theregulation of MMP-9 and occludin in rats, Int. J. Mol. Sci. 2013; 14 (6): 11096–112. https://doi.org/10.3390/ijms140611096.
  14. Intlekofer K.A., Cotman C.W. Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease. Neurobiol. Dis. 2013; 57: 47–55. https://doi.org/10.1016/j.nbd.2012.06.011.
  15. Tomlinson L., Leiton C.V., Colognato H. Behavioral experiences as drivers of oligodendrocyte lineage dynamics and myelin plasticity. Neuropharmacology. 2016; 548–62. https://doi.org/10.1016/j.neuropharm.2015.09.016.
  16. Trejo J.L., Carro E., Torres-Aleman I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 2001; 5: 1628–34. https://doi.org/10.1523/JNEUROSCI.21-05-01628.2001.
  17. Alvarez-Saavedra M., De Repentigny Y., Yang D., O’Meara R.W., Yan K., Hashem L.E., Racacho L., Ioshikhes I., Bulman D.E., Parks R.J., Kothary R., Picketts D.J. Voluntary running triggers VGF-mediated oligodendrogenesis to prolong the lifespan of Snf2h-null ataxic mice. Cell Rep. 2016; 3: 862–75. https://doi.org/10.1016/j.celrep.2016.09.030.
  18. Fabel K., Fabel K., Tam B., Kaufer D., Baiker A., Simmons N., Kuo C.J., Palmer T.D. VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 2003; 10: 2803–12. https://doi.org/10.1111/j.1460-9568.2003.03041.x.
  19. Lin Y., Dong J., Yan T., He X., Zheng X., Liang H., Sui M. Involuntary, forced and voluntary exercises are equally capable of inducing hippocampal plasticity and the recovery of cognitive function after stroke. Neurol Res. 2015; 37: 893–901. https://doi.org/10.1179/1743132815Y.0000000074
  20. Cai M., Wang H., Li J.J., Zhang Y.L., Xin L., Li F., Lou S.J. The signaling mechanisms of hippocampal endoplasmic reticulum stress affecting neuronal plasticity-related protein levels in high fat diet-induced obese rats and the regulation of aerobic exercise. Brain Behav Immun. 2016; 347–59. https://doi.org/10.1016/j.bbi.2016.05.010.
  21. Farmer J., Zhao X., van Praag H., Wodtke K., Gage F.H., Christie BR. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience. 2004; 1: 71–9. https://doi.org/10.1016/j.neuroscience.2003.09.029.
  22. Hohimer A.R., Hales J.R., Rowell L.B., Smith O.A. Regional distribution of blood flow during mild dynamic leg exercise in the baboon. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983; 4: 1173–7. https://doi.org/10.1152/jappl.1983.55.4.1173.
  23. Zobl E.G., Talmers F.N., Christensen R.C., Baer L.J. Effect of exercise on the cerebral circulation and metabolism. J. Appl. Physiol. 1965; 1289–93. https://doi.org/10.1152/jappl.1965.20.6.1289
  24. Ogoh S., Ainslie P.N. Regulatory mechanisms of cerebral blood flow during exercise:new concepts. Exerc. Sport Sci. Rev. 2009; 3: 123–9. https://doi.org/10.1097/JES.0b013e3181aa64d7.
  25. Delp M.D., Armstrong R.B., Godfrey D.A., Laughlin M.H., Ross C.D., Wilkerson M.K. Exercise increases blood flow to locomotor, vestibular, cardiorespiratory and visual regions of the brain in miniature swine. J. Physiol. 2001; 533 (3): 849–59. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00849.x.
  26. Holschneider D.P., Maarek J.M., Yang J., Harimoto J., Scremin O.U. Functional brain mapping in freely moving rats during treadmill walking. J. Cereb. Blood Flow Metab. 2003; 8: 925–32. https://doi.org/10.1097/01.WCB.0000072797.66873.6A.
  27. Gu W., Jiang W., Wester P. Real-time cortical cerebral blood flow follow-up in conscious, freely moving rats by laser Doppler flowmetry. Methods. 2003; 2: 172–7. https://doi.org/10.1016/s1046-2023(03)00078-1.
  28. Nishijima T., Torres-Aleman I., Soya H. Exercise and cerebrovascular plasticity. Prog Brain Res. 2016; 225: 243–68. https://doi.org/10.1016/bs.pbr.2016.03.010
  29. Chen Q., Xiao D.S. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus. Nitric Oxide. 2014; 36: 1–10. https://doi.org/10.1016/j.niox.2013.10.009.
  30. Воротникова М.В., Зеркалова Ю.Ф., Балыкин М.В. Реакции сосудов микрогемоциркуляции в головном мозге при физических нагрузках. Ульяновский медико-биологический журнал. 2012; 1: 76–81. [Vorotnikova M.V., Zerkalova Yu.F., Balykin M.V. Reactions of microcirculation vessels in the brain during physical exertion. Ulyanovsk medical and biological journal. 2012; 1: 76–81 (in Russian)]
  31. Chrishtop V.V., Tomilova I.K., Rumyantseva T.A. The Effect of Short-Term Physical Activity on the Oxidative Stress in Rats with Different Stress Resistance Profiles in Cerebral Hypoperfusion. Mol Neurobiol. 2020; 7: 3014–26. https://doi.org/10.1007 / s12035-020-01930-5.
  32. Laughlin M.H., Davis M.J., Secher N.H., van Lieshout J.J., Arce-Esquivel A.A., Simmons G.H., Bender S.B., Padilla J., Bache R.J., Merkus D., Duncker D.J. Peripheral circulation. Compr Physiol. 2012; 1: 321–447. https://doi.org/10.1002/cphy.c100048.
  33. Huang C.X., Qiu X., Wang S., Wu H., Xia L., Li C., Gao Y., Zhang L., Xiu Y., Chao F., Tang Y. Exercise-induced changes of the capillaries in the cortex of middleaged rats. Neuroscience. 2013; 233: 139–45. https://doi.org/10.1016/j.neuroscience.2012.12.046.
  34. Murrell C.J., Cotter J.D., Thomas K.N., Lucas S.J., Williams M.J., Ainslie PN. Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise:effect of age and 12-week exercise training. Age (Dordr.) 2013; 3: 905–20. https://doi.org/10.1007/s11357-012-9414-x.
  35. Bailey D.M., Marley C.J., Brugniaux J.V., Hodson D., New K.J., Ogoh S., Ainslie P.N. Elevated aerobic fitness sustained throughout the adult lifespan is associated with improved cerebral hemodynamics. Stroke. 2013; 11: 3235–8. https://doi.org/10.1161/STROKEAHA.113.002589.
  36. Austin M.W., Ploughman M., Glynn L., Corbett D. Aerobic exercise effects on neuroprotection and brain repair following stroke: a systematic review and perspective. Neurosci. Res. 2014; 87: 8–15. https://doi.org/10.1016/j.neures.2014.06.007.
  37. Jiang T., Zhang L., Pan X., Zheng H., Chen X., Li L., Luo J., Hu X. Physical Exercise Improves Cognitive Function Together with Microglia Phenotype Modulation and Remyelination in Chronic Cerebral Hypoperfusion. Front Cell Neurosci. 2017; 11: 404. https://doi.org/10.3389/fncel.2017.00404
  38. Svensson M., Lexell J., Deierborg T. Effects of Physical Exercise on Neuroinflammation, Neuroplasticity, Neurodegeneration, and Behavior: What We Can Learn from Animal Models in Clinical Settings. Neurorehabil Neural Repair. 2015; 6: 577–89. https://doi.org/10.1177/1545968314562108.
  39. Murphy T.H., Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009; 12: 861–72. DOI: https://doi.org/10.1038/nrn2735.
  40. Tian S., Zhang Y., Tian S., Yang X., Yu K., Zhang Y., Shen X., Zhang L., Sun Y., Xie H., He Z., Guo Z., Jia J., Wu Y., Bai Y., Zhu Y., Cheng Y., Wang X., Wu J., Wang N., Yu H., Hu Y. Early exercise training improves ischemic outcome in rats by cerebral hemodynamics. Brain Res. 2013; 1533: 114–21. https://doi.org/10.1016/j.brainres.2013.07.049.
  41. Leardini-Tristão M., Andrade G., Garcia C., Reis P.A., Lourenço M., Moreira E.T.S., Lima F.R.S., Castro-Faria-Neto H.C., Tibirica E., Estato V. Physical exercise promotes astrocyte coverage of microvessels in a model of chronic cerebral hypoperfusion. J. Neuroinflammation. 2020; 1: 117. https://doi.org/10.1186/s12974-020-01771-y.
  42. Kohman R.A., DeYoung E.K., Bhattacharya T.K., Peterson L.N., Rhodes J.S. Wheel running attenuates microglia proliferation and increases expression of a proneurogenic phenotype in the hippocampus of aged mice. Brain Behav. Immun. 2012; 26: 803–10. https://doi.org/10.1016/j.bbi.2011.10.006
  43. Miron V.E., Boyd A., Zhao J.W., Yuen T.J., Ruckh J.M., Shadrach J.L., van Wijngaarden P., Wagers A.J., Williams A., Franklin R.J.M., Ffrench-Constant C. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 2013; 16 (9): 1211–8. https://doi.org/10.1038/nn.3469.
  44. Kubotera H., Ikeshima-Kataoka H., Hatashita Y., Allegra Mascaro A.L., Pavone F.S., Inoue T. Astrocytic endfeet re-cover blood vessels after removal by laser ablation. Sci Rep. 2019; 9 (1): 1263. https://doi.org/10.1038/s41598-018-37419-4.
  45. Saur L., Baptista P.P., de Senna P.N., Paim M.F., do Nascimento P., Ilha J., Bagatini P.B., Achaval M., Xavier L.L. Physical exercise increases GFAP expression and induces morphological changes in hippocampal astrocytes. Brain Struct Funct. 2014; 1: 293–302. https://doi.org/10.1007/s00429-012-0500-8.
  46. Asahi M., Wang X., Mori T., Sumii T., Jung J.C., Moskowitz M.A., Fini M.E., Lo E.H. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis ofblood-brain barrier and white matter components after cerebral ischemia. J. Neurosci. 2001; 19: 7724–32 https://doi.org/10.1523/jneurosci.21-19-07724.2001