GENE SLCO1B1 ASSOCIATED WITH STATIN-INDUCED MYOPATHY IN RUSSIAN AND SAKHA (YAKUTIA) STATIN INTAKE PATIENTS SUFFERED FROM HYPERLIPIDEMIA

DOI: https://doi.org/None

Ya.V. Chertovskikh (1), G.N. Shuev (2), N.V. Popova (3), Z.A. Rudykh (3), N.R. Maksimova (4), A.V. Grachev (5), D.A. Sychev (6) 1 -The Ministry of Health of the Republic of Sakha (Yakutia), Lenina avenue, 30, Yakutsk, Republic of Sakha (Yakutia), 677011, Russian Federation; 2 -Far East State Medical University, Murav'eva-Amurskogo Str., 35, Khabarovsk, 680000, Russian Federation; 3 -Center of Personalized Medicine based on «Republican Hospital №3» of the SBD of the Sakha Republic (Yakutia), Gorky Str., 94, Yakutsk, 677027, Russian Federation; 4 -M.K. Ammosov North-Eastern Federal University, Belinsky Str., 58, Yakutsk, Republic of Sakha (Yakutia), 677000, Russian Federation; 5 -SM-Сlinic, Russian Federation, Klary Cetkin Str., 33/28, Moscow, 125130, Russian Federation; 6 -Russian Medical Academy of Postgraduate Education, Barrikadnaya Str., 2/1, Moscow, 123995, Russian Federation

Introduction. SLCO1B1 encodes the organic anion-transporting polypeptide which has been shown to regulate the hepatic uptake of statins. SLCO1B1*5 genetic variant is associated with the high risk for statin-induced myopathy in patients with statins therapy. Aim of the study. Aim of the study is to research the prevalence of the SLCO1B1*5 genetic variants in the Russian and Sakha (Yakutia) populations of patients with hyperlipidemia and to compare obtained data with similar populations available in the literature. Methods. The first group was consist of 1071 native Russian patient suffered from hyperlipidemia, the second group included 76 native Sakha (Yakutia) patients suffered from hyperlipidemia. All patients were genotyped according to SLCO1B1*5 genetic variant (с.521Т>С, rs4149056) by means of Real-Time PCR. We compared the date with similar groups of patients with hyperlipidemia presented in the literature. Results. The prevalence of the SLCO1B1*5 genetic variant in the Russian population is presented as follows: genotype TT – 62%, TC – 32% , CC – 6% of cases, the rate of c.521T allele was 0,78, c.521C allele – 0,22, Hardy–Weinberg's chi-square accounted for 3,1; p=0,21; n=1071. In the Sakha (Yakutia) population SLCO1B1*5 genetic variant is as follows: genotype TT – 82%, TC – 14%, CC – 4%, the rate of c.521T allele was 0,89, c.521C allele – 0,11, Hardy–Weinberg's chi-square – 5,13, p=0,077, n=76. There were detected significant differences in the prevalence of c.521C allele between the first and second groups, p= 0,0028. There is no difference in the prevalence of c.521C alleles between the second group and populations represented in the literature. Conclusion. There has been revealed pathological c.521C allele of SLCO1B1*5 in Russian and Sakha (Yakutia) native populations of patients with hyperlipidemia. The presence of a C allele on SLCO1B1 in patients with hyperlipidemia makes to approach more carefully to the issue of prescription of statin. There is presented to be interesting an international experience of the personalization of lipid-lowering therapy in such patients. There is remained to be actual the study of the influence of other genetic markers (c.388A>G, c.463C>A) of the development of statin-induced myopathias in patients with hyperlipidemia in mentioned populations.
Keywords: 
Yakutia (Sakha), Russian, statins, pharmacogenetics, myopathy, gene SLCO1B1

Список литературы: 
  1. Baigent C., Keech A., Kearney P.M., Blackwell L., Buck G., Pollicino C., Kirby A., Sourjina T., Peto R., Collins R., Simes R. Cholesterol Treatment Trialists’ (CTT) Collaborators. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005; 366 (9493): 1267–78. http://www.ncbi.nlm.nih.gov/pubmed/16214597
  2. Sewright KA, Clarkson PM, Thompson PD. Statin myopathy: incidence, risk factors, and pathophysiology. Curr Atheroscler Rep. 2007; 9: 389–96. http://www.ncbi.nlm.nih.gov/pubmed/18001622
  3. Bays H. Statin safety: an overview and assessment of the data – 2005. Am. J. of Cardiology. 2006; 97 (8A): 6–26. http://www.ncbi.nlm.nih.gov/pubmed/16581330
  4. Canestaro W.J., Austin M.A., Thummel K.E. Genetic factors affecting statin concentrations and subsequent myopathy: a HuGENet systematic review. Genet Med. 2014. http://www.ncbi.nlm.nih.gov/pubmed/24810685
  5. Carr D.F., O’Meara H., Jorgensen A.L., Campbell J., Hobbs M., McCann G., van Staa T., Pirmohamed M. SLCO1B1 Genetic Variant Associated With Statin-Induced Myopathy: A Proof-of-Concept Study Using the Clinical Practice Research Datalink. Clinical Pharmacology & Therapeutics. 2013; 94 (6): 695–701. http://www.ncbi.nlm.nih.gov/pubmed/23942138
  6. Voora D., Shah S.H., Spasojevic I., Ali S., Reed C.R., Salisbury B.A., Ginsburg G.S. The SLCO1B1*5 genetic variant is associated with statin-induced side effects. Journal of the American College of Cardiology. 2009; 54 (17): 1609–16. http://www.ncbi.nlm.nih.gov/pubmed/19833260
  7. SEARCH Collaborative Group, Link E., Parish S., Armitage J., Bowman L., Heath S., Matsuda F., Gut I., Lathrop M., Collins R. SLCO1B1 variants and statin-induced myopathy a genomewide study. The New England J. of Medicine. 2008; 359 (8): 789–99. http://www.ncbi.nlm.nih.gov/pubmed/18650507
  8. de Keyser C.E., Peters B.J., Becker M.L., Visser L.E., Uitterlinden A.G., Klungel O.H., Verstuyft C., Hofman A., Maitland-van der Zee A.H., Stricker B.H. The SLCO1B1 c.521T>C polymorphism is associated with dose decrease or switching during statin therapy in the Rotterdam Study. Pharmacogenet Genomics. 2014; 24 (1): 43–51. http://www.ncbi.nlm.nih.gov/pubmed/24263182
  9. Fredrickson D.S., Lees R.S. A system for phenotyping hyperlipoproteinemia. Circulation. 1965; 31: 321–7. https://www.ncbi.nlm.nih.gov/pubmed/14262568?dopt=Abstract
  10. Wilke R.A., Ramsey L.B., Johnson S.G., Maxwell W.D., McLeod H.L., Voora D., Krauss R.M., Roden D.M., Feng Q., Cooper-Dehoff R.M., Gong L., Klein T.E., Wadelius M., Niemi M. Clinical Pharmacogenomics Implementation Consortium (CPIC). The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther. 2012; 92 (1): 112–7. http://www.ncbi.nlm.nih.gov/pubmed/22617227
  11. Sirotkina A.M., Hohlov A.L., Voronina E.A., Mogutov M.S., Dryazhenkova I.V., Careva I.N., Limonova O.A. Rasprostranennost` polimorfnogo markera gena SLCO1B1 u pacientov s dislipidemiey i sistemnym aterosklerozom. Kardiovaskulyarnaya terapiya i profilaktika. 2013; 22. [Sirotkina A.M., CHohlov A.L., Voronina E.A., Mogutov M.S., Drjazhenkova I.V., Careva I.N., Limonova O.A. Prevalence of polymorphic marker gene SLCO1B1 in patients with dyslipidemia and systemic atherosclerosis. Cardiovascular Therapy and Prevention. 2013; 22 (in Russian)] http://www.cardioprevent.ru/downloads/c3m0i1295/%D0%A2%D0%B5%D0%B7%D0%B8%D1%81%D1%8B%202013.pdf
  12. Solodun M.V., Yakushin S.S. Osobennosti gipolipidemicheskoy terapii atorvastatinom pri infarkte miokarda s pozicii personalizirovannoy mediciny. Racional`naya farmakoterapiya v kardiologii. 2015; 11 (1) 31–5. [Solodun M.V., Jakushin S.S. Aspects of lipid-lowering therapy with atorvastatin in patients with myocardial infarction from the perspective of personalized medicine Rational Pharmacotherapy in Cardiology. 2015; 11 (1) 31–5 (in Russian)] http://cyberleninka.ru/article/n/osobennosti-gipolipidemicheskoy-terapii-atorvastatinom-pri-infarkte-miokarda-s-pozitsiy-personalizirovannoy-meditsiny
  13. Sortica V.A., Fiegenbaum M., Lima L.O., Van der Sa nd C.R., Van der Sand L.C., Ferreira M.E., Pires R.C., Hutz M.H. SLCO1B1 gene variability influences lipid-lowering efficacy on simvastatin therapy in Southern Brazilians Clin Chem Lab Med. 2012; 50 (3): 441–8. http://www.ncbi.nlm.nih.gov/pubmed/22505549
  14. Lee H.K., Hu M., Lui S.Sh., Ho C.S., Wong C.K., Tomlinson B. Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9/19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics. 2013; 14 (11): 1283–94. http://www.ncbi.nlm.nih.gov/pubmed/23930675
  15. Fu Q., Li Y.P., Gao Y., Yang S.H., Lu P.Q., Jia M., Zhang L.R. Lack of association between SLCO1B1 polymorphism and the lipid-lowering effects of atorvastatin and simvastatin in Chinese individuals. Eur. J. Clin. Pharmacol. 2013; 69 (6): 1269–74. http://www.ncbi.nlm.nih.gov/pubmed/23263738
  16. Yang G.P., Yuan H., Tang B., Zhang W., Wang L.S., Huang Z.J., Ou-Yang D.S., Zhang G.X., Zhou H.H. Lack of effect of genetic polymorphisms of SLCO1B1 on the lipid-lowering response to pitavastatin in Chinese patients. Acta Pharmacol Sin. 2010; 31 (3): 382–6. http://www.ncbi.nlm.nih.gov/pubmed/20140004
  17. Hu M., Tomlinson B. Effects of statin treatments and polymorphisms in UGT1A1 and SLCO1B1 on serum bilirubin levels in Chinese patients with hypercholesterolaemia. Atherosclerosis. 2012; 223 (2): 427–32. http://www.ncbi.nlm.nih.gov/pubmed/22749334
  18. Couvert P., Giral P., Dejager S., Gu J., Huby T., Chapman M.J., Bruckert E., Carrié A. Association between a frequent allele of the gene encoding OATP1B1 and enhanced LDL-lowering response to fluvastatin therapy. Pharmacogenomics. 2008; 9 (9): 1217–27. http://www.ncbi.nlm.nih.gov/pubmed/18781850
  19. Tachibana-Iimori R., Tabara Y., Kusuhara H., Kohara K., Kawamoto R., Nakura J., Tokunaga K., Kondo I., Sugiyama Y., Miki T. Effect of genetic polymorphism of OATP-C (SLCO1B1) on lipid-lowering response to HMG-CoA reductase inhibitors. Drug Metab Pharmacokinet. 2004; 19 (5): 375–80. http://www.ncbi.nlm.nih.gov/pubmed/15548849
  20. Shuev G.N., Sychev D.A., Grachev A.V. Polimorfizm gena SLCO1B1 predraspolagayushhiy k razvitiyu miopatii pri primenenii statinov u rossiyskih pacientov s giperlipidemiyami. Preventivnaya medicina segodnya №1. [Shuev G.N., Sychev D.A., Grachev A.V Gene polymorphism SLCO1B1, associated with the development of myopathy in Russian patients with hyperlipidemia using statins Preventive medicine today №1 (in Russian)] http://prev-med.ru/zhurnale.aspx
  21. Pasanen M.K., Neuvonen P.J., Niemi M. Global analysis of genetic variation in SLCO1B1. Pharmacogenomics. 2008; 9 (1): 19–33. http://www.ncbi.nlm.nih.gov/pubmed/18154446
  22. FDA: Limit Use of 80 mg Simvastatin 1. FDA Consumer Health Information. U.S. Food and Drug Administration JUNE 2011. http://www.fda.gov/downloads/forconsumers/consumerupdates/ucm257911.pdf
  23. Ramsey L.B., Johnson S.G., Caudle K.E., Haidar C.E., Voora D., Wilke R.A., Maxwell W.D., McLeod H.L., Krauss R.M., Roden D.M., Feng Q., Cooper-DeHoff R.M., Gong L., Klein T.E., Wadelius M., Niemi M. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin Pharmacol Ther. 2014; 96 (4): 423–8. http://www.ncbi.nlm.nih.gov/pubmed/24918167
  24. Fedorova S.A., Reidla M., Metspalu E., Metspalu M., Rootsi S., Tambets K., Trofimova N., Zhadanov S.I., Hooshiar Kashani B., Olivieri A., Voevoda M.I., Osipova L.P., Platonov F.A., Tomsky M.I., Khusnutdinova E.K., Torroni A., Villems R. Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): implications for the peopling of Northeast Eurasia. BMC Evol Biol. 2013; 13: 127. http://www.ncbi.nlm.nih.gov/pubmed/23782551
  25. Matsumoto H. Characteristics of Mongoloid and neighboring populations based on the genetic markers of human immunoglobulins. Hum Genet. 1988; 80 (3): 207–18. http://www.ncbi.nlm.nih.gov/pubmed/3056831