GENERAL AND SPECIFIC IN THE GENOME OF PATIENTS WITH TYPE 1 AND TYPE 2 DIABETES

DOI: https://doi.org/None

A.N. Kucher (1,2), N.V. Tarasenko (1,3), V.P. Puzyrev (1,3) 1 -Research Institute of Medical Genetics, Naberezhnaya Ushaiki, 10, Tomsk, 634050, Russian Federation; 2 -National Research Tomsk State University, Leninа Prospekt, 36, Tomsk, 634050, Russian Federation; 3 -Siberian State Medical University, Moscowski Trakt, 2, Tomsk, 634050, Russian Federation

Introduction. Diabetes mellitus type 1 and type 2 are having a number similar etiological factors and certain resemblance in the mechanisms of the disease. Therefore it is important to try to estimate the role of common genetic component in the genesis and formation of diabetes of both types. The aim of the study. Search for general and specific genes for type 1 and type 2 diabetes by analyzing the genetic databases. Methods. Sources of information about the associations of genetic markers with diabetes mellitus type 1 and 2 are two databases: The Genetic Association Database (GAD) and Catalog of Published Genome-Wide Association Studies (GWAS); associated genes are involved in biological processes, information on which are taken from Human Protein Reference Database. Results. Modern genetic databases (GAD and GWAS) define 381 gene variants that are associated with the manifestation of diabetes in humans, 92 of them – are specific to type 1 diabetes, 237 – specific to type 2 diabetes, and 59 genes are common to these diseases. Genes that are common to these two diseases were also associated with diabetic complications, glucose metabolism indices and some other diseases and symptoms (obesity, ischemic heart disease, biochemical markers of lipid metabolism, chronic bowel diseases). Among the common genes for type 1 diabetes and type 2 diabetes there are the most important genes whose products are involved in signal transduction and cell interactions, as well as those involved in the regulation of metabolism (mainly providing energy pathways). Most of genes that are specific to type 1 diabetes, there are genes of the immune response. Specific genes for type 2 diabetes – those whose products regulate the metabolism of nucleic acids.Conclusion. In the structure of inherited predisposition to type 1 diabetes and type 2 diabetes are identified specific and common genes. Personalization and unification in the treatment and prognosis of various forms of disorders of carbohydrate metabolism, «evolving» into the variety of nosological forms of diabetes, shouldbe taken into accountin the organization ofmedical care to patients.
Keywords: 
inherited predisposition, type 1 diabetes, type 2 diabetes, common genes, specific genes

Список литературы: 
  1. Piters-Harmel E`., Matur R. Saharnyy diabet: diagnostika i lechenie. M.: Praktika, 2008; 496.[Piters-Harmel Je., Matur R. Diabetes Mellitus: Diagnosis and Treatment. M.: Praktika, 2008; 496 (in Russian)]
  2. Ametov A.S., Kamynina L.L. Obnovlennye klinicheskie rekomendacii AACE po diagnostike i lecheniyu saharnogo diabeta tipa 2 (personalizirovannaya profilakticheskaya diabetologiya). E`ndokrinologiya: novosti, mneniya, obuchenie. 2013; 2: 42–54. [Ametov A.S., Kamynina L.L. AACE comprehensive diabetes management algorithm 2013 (personalized prophylactic diabetology), Jendokrinologija: novosti, mnenija, obuchenie. 2013; 2: 42–54 (in Russian)]
  3. Tkachuk V.A., Vorotnikov A.V. Molekulyarnye mehanizmy razvitiya rezistentnosti k insulinu. Saharnyy diabet. 2014; 2: 29–40. [Tkachuk V.A., Vorotnikov A.V. Molecular mechanisms of insulin resistance development. Diabetes Mellitus. 2014; 2: 29–40 (in Russian)]
  4. Galstyan G.R. Nacional`nyy e`kspertnyy sovet po saharnomu diabetu: nereshennye problemy i novye vozmozhnosti terapii saharnogo diabeta. Saharnyy diabet. 2014; 3: 129–33. [Galstjan G.R. National advisory board on diabetes mellitus: unsolved issues and new opportunities for diabetes treatment. Diabetes Mellitus. 2014; 3: 129–33 (in Russian)]
  5. Poulsen P., Kyvik K.O., Vaag A., Beck-Nielsen H. Heritability of Type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance – a population-based twin study. Diabetologia. 1999; 42 (2): 139–45.
  6. Redondo M.J., Fain P.R., Eisenbarth G.S. Genetics of type 1A diabetes. Recent progress in hormone research. 2000; 56: 69–89.
  7. Hyttinen V., Kaprio J., Kinnunen L., Koskenvuo M., Tuomilehto J.Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes. 2003; 52 (4): 1052–5.
  8. Leahy J.L. Pathogenesis of type 2 diabetes mellitus. Archives of medical research. 2005; 36 (3): 197–209.
  9. Robles D.T., Eisenbarth G.S. Type 1A diabetes induced by infection and immunization. Journal of autoimmunity. 2001; 16 (3): 355–62.
  10. Van Belle T.L., Coppieters K.T., Von Herrath M.G. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiological reviews. 2011; 91 (1): 79–118.
  11. Nikonova T.V. Sovremennye aspekty patogeneza saharnogo diabeta 1 tipa. Saharnyy diabet. 2006; 3: 59–64.[Nikonova T.V. Contemporary aspects of pathogenesis of type 1 diabetes. Diabetes Mellitus. 2006; 3: 59–64 (in Russian)]
  12. Bluestone J.A., Herold K., Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 201; 464 (7293): 1293–300.
  13. Nikonova T.V., Pekareva E.V., Dedov I.I. Funkcional`naya aktivnost` β-kletok i perifericheskaya insulinorezistentnost` u pacientov s razlichnymi variantami debyuta saharnogo diabeta. Saharnyy diabet. 2012; 3: 24–6.[Nikonova T.V., Pekareva E.V., Dedov I.I. Functional activity and peripheral insulin resistance in patients with different types of onset of diabetes mellitus. Diabetes Mellitus. 2012; 3: 24–6 (in Russian)]
  14. Blaslov K., Bulum T., Zibar K., Duvnjak L. Relationship between adiponectin level, insulin sensitivity, and metabolic syndrome in type 1 diabetic patients. International journal of endocrinology. 2013; 2013: 535906.
  15. Chillarón J.J., Flores Le-Roux J.A., Benaiges D., Pedro-Botet J. Type 1 diabetes, metabolic syndrome and cardiovascular risk. Metabolism. 2014; 63 (2): 181–7.
  16. Stumvoll M., Goldstein B.J., van Haeften T.W. Pathogenesis of type 2 diabetes. Endocrine research. 2007; 32 (1–2): 19–37.
  17. Alsahli M., Gerich J.E. Pathogenesis of Type 2 Diabetes. Atlas of Diabetes. Springer US, 2012: 149–66.
  18. Wilkin T.J. Acceleration hypothesis: weight gain as missing link between type I and type II diabetes. Diabetologia. 2001; 44: 914–22.
  19. Wilkin T.J. Diabetes: 1 and 2, or one and the same? Progress with the accelerator hypothesis. Pediatric Diabetes. 2008; 9 (II): 23–32.
  20. Wilkin T.J. Acceleration hypothesis: a review of the evidence for insulin resistance as basis for type I as well as type II diabetes. Int. J. Obes. (Lond). 2009 (7): 716–26.
  21. http://geneticassociationdb.nih.gov.
  22. http://www.hugenavigator.net/HuGENavigator.
  23. Cooper J.D., Smyth D.J., Bailey R., Payne F., Downes K., Godfrey L.M., Masters J., Zeitels L.R., Vella A., Walker N.M., Todd J.A. The candidate genes TAF5L, TCF7, PDCD1, IL6 and ICAM1 cannot be excluded from having effects in type 1 diabetes. BMC Medical Genetics. 2007; 8:71.
  24. Cooper J.D., Walker N.M., Healy B.C., Smyth D.J., Downes K., Todd J.A., Type I Diabetes Genetics Consortium. Genetics Consortium Analysis of 55 autoimmune disease and type II diabetes loci: further confirmation of chromosomes 4q27, 12q13.2 and 12q24.13 as type I diabetes loci, and support for a new locus, 12q13.3–q14.1. Genes Immun. 2009; 10 (1): 95–120.
  25. Owen K.R., McCarthy M.I. Type 1 and type 2 diabetes–chalk and cheese? Diabetologia. 2009; 52: 1983–6.
  26. Raj S.M., Howson J.M.M., Walker N.M., Cooper J.D., Smyth D.J., Field S.F., Stevens H.E., Todd J.A. No association of multiple type 2 diabetes loci with type 1 diabetes. Diabetologia. 2009; 52: 2109–16.
  27. Grant S.F.A., Hakonarson H., Schwartz S. Can the Genetics of Type 1 and Type 2 Diabetes Shed Light on the Genetics of Latent Autoimmune Diabetes in Adults? Endocrine Reviews. 2010; 31 (2): 183–93.
  28. Torkamani A., Topol E.J., Schork N.J. Pathway analysis of seven common diseases assessed by genome-wide association. Genomics. 2008; 92 (5): 265–72.
  29. Collares C.V.A., Evangelista A.F, Xavier D.J., Takahashi P., Almeida R., Macedo C., Manoel-Caetano F., Foss M.C., Foss-Freitas M.C., Rassi D.M., Sakamoto-Hojo E.T., Passos G.A., Donadi E.A. Transcriptome meta-analysis of peripheral lymphomononuclear cells indicates that gestational diabetes is closer to type 1 diabetes than to type 2 diabetes mellitus. Mol. Biol. Rep. 2013; 40: 5351–8.
  30. Evangelista A.F., Collares C.V.A., Xavier D.J., Macedo C., Manoel-Caetano F.S., Rassi D.M., Foss-Freitas M.C., Foss M.C., Sakamoto-Hojo E.T., Nguyen C., Puthier D., Passos G.A, Donadi E.A. Integrative analysis of the transcriptome profiles observed in type 1, type 2 and gestational diabetes mellitus reveals the role of inflammation. BMC Medical Genomics. 2014; 7 (28).
  31. Zhang Y., De S., Garne J.R., Smith K., Wang S.A., Becker K.G. Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information. BMC Medical Genomics. 2010; 3: 1.
  32. Hindorff L.A., MacArthur J., Morales J., Junkins H.A., Hall P.N., Klemm A.K., Manolio T.A. A Catalog of Published Genome-Wide Association Studies. Available at: www.genome.gov/gwastudies.
  33. Welter D., MacArthur J., Morales J., Burdett T., Hall P., Junkins H., Klemm A., Flicek P., Manolio T., Hindorff L., Parkinson H. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Research. 2014; 42 (Database issue): 1001–6.
  34. Prasad T.S.K., Goel R., Kandasamy K., Keerthikumar S., Kumar S., Mathivanan S., Telikicherla D., Raju R., Shafreen B., Venugopal A., Balakrishnan L., Marimuthu A., Banerjee S., Somanathan D.S., Sebastian A., Rani S., Ray S., Harrys Kishore C.J., Kanth S., Ahmed M., Kashyap M.K., Mohmood R., Ramachandra Y.L., Krishna V., Rahiman B.A., Mohan S., Ranganathan P., Ramabadran S., Chaerkady R., Pandey A.. Human Protein Reference Database – 2009 Update. Nucleic Acids Research. 2009; 37 (Database issue): 767–72.
  35. Pal`cev M.A., Kvetnoy I.M., Il`nickiy A.N., Proshhaev K.I., Kvetnaya T.V., Sovenko G.N., Bessarabov V.I. Ozhirenie: molekulyarnye mehanizmy i optimizaciya targetnoy terapii. Molekulyarnaya medicina. 2013; 2: 3–12.[Pal’cev M.A., Kvetnoj I.M., Il’nickij A.N., Proshhaev K.I., Kvetnaja T.V., Sovenko G.N., Bessarabov V.I. The obesity: the molecular mechanisms and the optimization of target therapy. Molekuliarnaia meditsina. 2013; 2: 3–12 (in Russian)]
  36. Puzyrev V.P., Makeeva O.A., Freidin M.B. Syntropy, genetic testing and personalized medicine. Personalized Medicine. 2010; 7 (4): 399–405.
  37. McArdle M.A., Finucane O.M., Connaughton R.M., McMorrow A.M., Roche H.M. Mechanisms of obesity-induced inflammation and insulin resistance: insights into the emerging role of nutritional strategies. Front. Endocrinol. (Lausanne). 2013; 4: 52.
  38. Ferland-McCollough D., Ozanne S.E., Siddle K., Willis A.E., Bushell M. The involvement of microRNAs in Type 2 diabetes. Biochem. Soc. Trans. 2010; 38 (6): 1565–70.
  39. Esguerra J.L., Mollet I.G., Salunkhe V.A., Wendt A., Eliasson L. Regulation of Pancreatic Beta Cell Stimulus-Secretion Coupling by microRNAs. Genes (Basel). 2014; 5 (4): 1018–31.
  40. Xie Z., Chang C., Zhou Z. Molecular Mechanisms in Autoimmune Type 1 Diabetes: a Critical Review. Clinic Rev Allerg. Immunol. 2014; 47: 174–92.
  41. Chen H., Lan H.-Y., Roukos D.H., Cho W.C. Application of microRNAs in diabetes mellitus. Journal of Endocrinology. 2014; 222: 1–10.
  42. Hight B.F., Scott L.J., Stenthorsdottir V., Morris A.P., Dina C., Welch R.P., Zeggini E., Huth C., Aulchenko Y.S., Thorleifsson G., McCulloch L.J., Ferreira T., Grallert HVo., Amin N., Wu G., Willer C.J., Raychaudhuri S., McCarroll S.A., Langenberg C., Hofmann O.M., Dupuis J., Qi L., Segrè A.V., van Hoek M., Navarro P., Ardlie K., Balkau B., Benediktsson R., Bennett A.J., Blagieva R., Boerwinkle E., Bonnycastle L.L., Bengtsson Boström K., Bravenboer B., Bumpstead S., Burtt N.P., Charpentier G., Chines P.S., Cornelis M., Couper D.J., Crawford G., Doney A.S., Elliott K.S., Elliott A.L., Erdos M.R., Fox C.S., Franklin C.S., Ganser M., Gieger C., Grarup N., Green T., Griffin S., Groves C.J., Guiducci C., Hadjadj S., Hassanali N., Herder C., Isomaa B., Jackson A.U., Johnson P.R., Jørgensen T., Kao W.H., Klopp N., Kong A., Kraft P., Kuusisto J., Lauritzen T., Li M., Lieverse A., Lindgren C.M., Lyssenko V., Marre M., Meitinger T., Midthjell K., Morken M.A., Narisu N., Nilsson P., Owen K.R., Payne F., Perry J.R., Petersen A.K., Platou C., Proença C., Prokopenko I., Rathmann W., Rayner N.W., Robertson N.R., Rocheleau G., Roden M., Sampson M.J., Saxena R., Shields B.M., Shrader P., Sigurdsson G., Sparsø T., Strassburger K., Stringham H.M., Sun Q., Swift A.J., Thorand B., Tichet J., Tuomi T., van Dam R.M., van Haeften T.W., van Herpt T., van Vliet-Ostaptchouk J.V., Walters G.B., Weedon M.N., Wijmenga C., Witteman J., Bergman R.N., Cauchi S., Collins F.S., Gloyn A.L., Gyllensten U., Hansen T., Hide W.A., Hitman G.A., Hofman A., Hunter D.J., Hveem K., Laakso M., Mohlke K.L., Morris A.D., Palmer C.N., Pramstaller P.P., Rudan I., Sijbrands E., Stein L.D., Tuomilehto J., Uitterlinden A., Walker M., Wareham N.J., Watanabe R.M., Abecasis G.R., Boehm B.O., Campbell H., Daly M.J., Hattersley A.T., Hu F.B., Meigs J.B., Pankow J.S., Pedersen O., Wichmann H.E., Barroso I., Florez J.C., Frayling T.M., Groop L., Sladek R., Thorsteinsdottir U., Wilson J.F., Illig T., Froguel P., van Duijn C.M., Stefansson K., Altshuler D., Boehnke M., McCarthy M.I.; MAGIC investigators; GIANT Consortium. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 2010; 42: 579–89.
  43. Imamura M., Maeda S. Genetics of type 2 diabetes: the GWAS era and future perspectives. Endocr. J. 2011; 58 (9): 723–39.
  44. Gilbert E.R., Liu D. Epigenetics: the missing link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes. Epigenetics. 2012; 7 (8): 841–52.