EVOLUTIONARY SIGNIFICANCE OF NON-SYNONYMOUS SUBSTITUTIONS FOR MYCOBACTERIUM TUBERCULOSIS OF URAL GENOTYPE

DOI: https://doi.org/None

V.V. Sin’kov (1,2), O.B. Ogarkov (1,3), I.V. Mokrousov (4), S.N. Zhdanova (1,5) 1 -Scientific Centre for Family Health and Human Reproduction Problems, Timiryazeva str., 16, Irkutsk, 664003, Russian Federation; 2 -Irkutsk Regional Clinical Consulting-diagnostic center, Baykalskayastr, 109, Irkutsk, 664047, Russian Federation; 3 -Irkutsk State Medical Academy of Continuing Education, Yubileynymikroraion str., 100k4, Irkutsk, 664049, Russian Federation; 4 -Saint Petersburg Pasteur Institute, Mira str., 14, Saint Petersburg, 197101, Russian Federation; 5 -Irkutsk State University, Karla Marksa str, 1, Irkutsk, 664003, Russian Federation

Introduction. Russian population of Mycobacterium tuberculosis includes both highly virulent and less virulent strains; the Ural genotype makes an example of the latters. The aim of study was investigation of the most significant synonymous and non-synonymous nucleotide substitutions in 110 genomes of M. tuberculosis, Ural genotype, available in GenBank and obtained through GMTV database. Methods. The VCF files were proceeded with our own scripts written in Ruby and Bash programming language for single nucleotide polymorphism (SNP) annotation (ene name, function, COG, PFAM and KEGG groups, type of change). A comparative phylogenetic analysis of the polymorphic characters was performed with MEGA software.Results. A total of 5183 synonymous and non-synonymous SNP were found, but only 8 unique nonsynonymous SNPs, specific of the Ural genotype were identified. These substitutions were in the following genes: Rv1901; Rv1966; Rv1967; Rv2345; Rv2485c; Rv2933 and Rv3498c. Both synonymous and non-synonymous substitutions were used for phylogenetic reconstruction of the evolution of the Ural genotype. Phylogenetic tree of genotype Ural strains was subdivided into two clusters with the level of bootstrap support of more than 95%: (i) a small and heterogeneous «ancient» group (Ural-a [a=ancient]) and (ii) a large and homogeneous «young/modern» (Ural-m [m=modern]) group. Ural-m strains appear to be more successful epidemic strains since they form the most phylogenetically compact group. Furthermore, Ural-m strains are carriers of multidrug resistance (MDR) mutations significantly more frequently than Ural-a strains (χ2=5,9; p=0,01). The analysis of 8 amino acid substitutions unique to the Ural genotype suggests that the most of mutations occurred in their progenitor genome, were important for lipid metabolism. Probably those events could ultimately lead to a decrease of virulence of the Ural genotype. Conclusion. Separate analysis of mutations that are unique to the Ural-a and Ural-m groups, suggests that natural selection occurred in Ural-m group in direction of increasing the resistance to antibiotics due to mutations in regulatory genes. Also in both groups, specific mutations in the regulatory genes could lead to the restoration of virulence as compared to a hypothetical founder.
Keywords: 
Mycobacterium. tuberculosis, Ural genotype, SNP, virulence, persisters

Список литературы: 
  1. Ogarkov O.B., Medvedeva T.V., Zozio T., Pogorelov V.I., Nekipelov O.M., Gutnikova M.Yu., Kupcevich N.Yu., Ushakov I.V., Sola C. Molekulyarnoe tipirovanie shtammov mikobakteriy tuberkuleza v Irkutskoy oblasti (Vostochnaya Sibir`) v 2000–2005 gg. Molekulyarnaya medicina. 2007; 2: 33–8.[Ogarkov O.B., Medvedeva T.V., Zozio T., Pogorelov V.I., Necipelov O.M.,. Gutnikova M.Yu., Kuptsevich N.Yu., Ushakov I.V., Sola C. Molecular typing of the tuberculosis strains in Irkutsk region (East Siberia) in 2000–2005. Molecular medicine. 2007; 2: 33–8 (in Russian)]
  2. Mokrousov I. The quiet and controversial: Ural family of Mycobacterium tuberculosis. Infect Genet Evol. 2012; 12 (4): 619–29.
  3. Andreevskaya S.N., Chernousova L.N., Smirnova T.G., Larionova E.E., Kuz`min A.V. Vliyanie genotipa M. tuberculosis na vyzhivaemost` myshey pri e`ksperimental`nom tuberkuleze. Problemy tububerkuleza i bolezney legkih. 2007; 7: 45–50.[Andreevskaia SN, Chernousova LN, Smirnova TG, Larionova EE, Kuz’min AV. Impact of M. tuberculosis genotype on survival in mice with experimental tuberculosis. Probl. Tuberk. Bolezn. Legk. 2007; 7: 45–50 (in Russian)]
  4. Ogarkov O., Mokrousov I., Sinkov V., Zhdanova S., Antipina S., Savilov E.. ‘Lethal’ combination of Mycobacterium tuberculosis Beijing genotype and human CD209 -336G allele in Russian male population. Infect. Genet. Evol. 2012; 12: 732–6.
  5. Sin`kov V.V., Ogarkov O.B., Filipenko M.L., Zhdanova S.N., Savilov E.D., Kravchenko A.F. Vyyavlenie nesinonimichnyh zamen u Mycobacterium tuberculosis genotipa Ural metodom polnogenomnogo sekvenirvaniya. Sbornik tezisov. VIII vserossiyskoy konferencii «Molekulyarnaya diagnostika – 2014» Moskva: 2014; 2: 291–2.[Sinkov V.V., Ogarkov O.B., Filipenko M.L., Zhdanov S.N., Savilov E.D., Kravchenko A.F. Identification of nonsynonymous substitutions in Mycobacterium tuberculosis genotype Ural by full genome sequencing. Book of abstracts VIII Conference «Molecular Diagnostics – 2014» Moscow: 2014; 2: 291–2 (in Russian)]
  6. Ramage H.R., Connolly L.E., Cox J.S. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet. 2009; 5 (12): e1000767
  7. Griffin M.A., Davis J.H., Strobel S.A. Bacterial toxin RelE: a highly efficient ribonuclease with exquisite substrate specificity using atypical catalytic residues. Biochemistry. 2013; 52 (48): 8633–42.
  8. Miallau L., Jain P, Arbing M.A., Cascio D., Phan T., Ahn C.J., Chan S., Chernishof I., Maxson M., Chiang J., Jacobs W.R., Eisenberg D.S. Comparative proteomics identifies the cell-associated lethality of M. tuberculosis RelBE-like toxin-antitoxin complexes. Structure. 2013; 21 (4): 627–37.
  9. Chernyaeva E.N., Shulgina M.V., Rotkevich M.S. et al. Genome-wide Mycobacterium tuberculosis variation (GMTV) database: a new tool for integrating sequence variations and epidemiology. BMC Genomics. 2014; 15 (1): 308.
  10. Langmead B., Trapnell C., Pop M., Salzberg S.L.. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10: R25.
  11. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25 (16): 2078–9.
  12. Cingolani P., Platts A., Wang L., Coon M., Nguyen T., Land S.J., Lu X., Ruden D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) – 2012; 6 (2): 80–92.
  13. Tang H., Wyckoff G.J., Lu J., Wu C.I. A universal evolutionary index for amino acid changes. Mol. Biol. Evol. 2004; 8: 1548–56.
  14. Gioffré A., Infante E., Aguilar D. Mutation in mce operons attenuates Mycobacterium tuberculosis virulence. Microbes Infect. 2003; 7 (3): 325–34.
  15. Shimono N., Morici L., Casali N., Cantrell S., Sidders B., Ehrt S., Riley L.W.. Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc. Nat. Acad. Sci. USA. 2003; 100 (26); 15918–23.
  16. Clark L.C., Seipke R.F., Prieto P., Willemse J., van Wezel G.P., Hutchings M.I., Hoskisson P.A. Mammalian cell entry genes in Streptomyces may provide clues to the evolution of bacterial virulence. Sci Rep. 2013; 3: 1109, doi: 10.1038/srep01109.
  17. Bisson G.P., Mehaffy C., Broeckling C., Prenni J., Rifat D., Lun D.S., Burgos M., Weissman D., Karakousis P.C., Dobos K. Upregulation of the phthiocerol dimycocerosate biosynthetic pathway by rifampin-resistant, rpoB mutant Mycobacterium tuberculosis. J. Bacteriol. 2012; 194 (23): 6441–52.
  18. Singh G., Arya S., Kaur M., Kaur J. Rv2485c, a Putative Lipase of M. tuberculosis: Expression, Purification and Biochemical Characterization. International journal of tropical disease & health. 2014; (4) 1: 1–17
  19. Eremeeva N.I., M.A. Kravchenko, K.V. Bobrovskaya, T.V. Umpeleva, Kanishhev V.V. Biologicheskie svoystva kul`tur M. tuberculosis, vydelennyh s poverhnostey predmetov protivotuberkuleznogo stacionara. Sbornik tezisov II kongressa nacional`noy associacii ftiziatrov. S-Peterburg. 2013; 67–8.[Eremeeva N.I., Kravchenko M.A., Bobrovskaya T.V., Umpeleva T.V., Kanischev V.V. Biological properties of M. tuberculosis strains isolated from the surfaces of objects in tuberculosis hospital. Book of abstracts II Congress of the National Association phthisiologists. St. Petersburg. 2013; 67–8 (in Russian)]
  20. Kovalev S.Y., Kamaev E.Y., Kravchenko M.A., Kurepina N.E., Skorniakov S.N. Genetic analysis of Mycobacterium tuberculosis strains isolated in Ural region, Russian Federation, by MIRU-VNTR genotyping. Int. J. Tuberc Lung Dis. 2005; 9 (7): 746–52.
  21. Eremeeva N.I., Kanishhev V.V., Kravchenko M.A., Vahrusheva D.V., Umpeleva T.V. E`ksperimental`naya ocenka ustoychivosti lekarstvenno-chuvstvitel`nyh kul`tur M. tuberculosis raznyh geneticheskih klasterov k vozdeystviyu dezinficiruyushhih sredstv na osnove kationnyh poverhnostno-aktivnyh veshhestv. Medicinskiy akademicheskiy zhurnal. 2012; (12): 316–8.[Eremeeva N.I., Kanischev V.V., Kravchenko M.A., Vahrusheva D.V., Umpeleva T.V. Experimental evaluation of the stability of drug-sensitive strains of M. tuberculosis different genetic clusters to disinfectants based on cationic surfactants. Medical academic J. 2012; (12): 316–8 (in Russian)]
  22. Parish T., Smith D.A., Kendall S., Casali N., Bancroft G.J., Stoker N.G. Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect Immun. 2003; 71 (3): 1134–40.
  23. Singh R., Barry C.E., Boshoff H.I. The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance. J. Bacteriol. 2010; 192 (5): 1279–91.