A.А. Panteleyev (1), E.V. Sytina (1), E.A. Chaban (2), M.A. Paltsev (2) 1 -National Research Centre «Kurchatov Institute», pl. Kurchatova, 1, Moscow, 123182, Russian Federation; 2 -Institute of Biochemical Physics. NM Emanuel Russian Academy of Sciences, Kosygina str, 4, Moscow, 119334, Russian Federation

Introduction. Amniotic tissue sheath is unique in its wound-healing properties, including anti-fibrotic, immunosuppressive and antibacterial features, as well as in its ability to stimulate cell proliferation and migration. These properties are further complemented with high availability and easy handling, which are both rare for «almost embryonic» material. At the same time, the use of the amnion in the form of live intact sheath in regenerative skin therapy is unfairly low. Therefore, the studies of amnion use in skin bioengineering and skin replacement therapy for extensive burns are in high demand. The goal of this work is to demonstrate the ability of intact amniotic epithelium, cultured in vitro, to form a multilayered epidermis-like epithelium. Methods. Native human amnion was cultivated on collagen gel in the presence of murine embryonic fibroblast. Differentiation was evaluated by histologic and immunofluorescence methods. Results. We've demonstrated the ability of the amniotic epithelium, cultured in vitro in the presence of primary fibroblasts, to form a multilayered epithelium expressing epidermis-specific keratins 1 and 10. It is noteworthy that the ability of the amniotic epithelium to go along the «epidermal» type of differentiation is intrinsic and does not require additional stimulation by growth factors or other bioactive substances. Conclusion. Obtained results suggest that live intact amnion membrane can be effectively used in skin tissue engineering and regenerative therapy, in particular in the treatment of extensive burns and trophic ulcers.
amnion, burn therapy, differentiation, epidermis, skin equivalent, tissue engineering

Список литературы: 
  1. Limová M. Active wound coverings: bioen-gineered skin and dermal substitutes. Surg Clin. North Am. 2010; 90 (6): 1237–55.
  2. Pereira C., Gold W., Herndon D. Review pa-per: burn coverage technologies: current concepts and future directions. J. Biomater Appl. 2007; 22 (2): 101–21.
  3. Van Herendael B.J., Oberti C., Brosens I. Microanatomy of the human amniotic membranes. A light microscopic, transmis-sion, and scanning electron microscopic study. Am. J. Obstet. Gynecol. 1978; 131 (8): 872–80.
  4. Davis J.S. Skin transplantation. Johns Hop-kins Hospital Reports. 1910; 15: 307–96.
  5. Barski D., Gerullis H., Ecke T., Varga G., Boros M., Pintelon I., Timmermans J.P., Winter A., Bagner J.W., Otto T. Repair of a vesico-vaginal fistula with amniotic membrane – Step 1 of the IDEAL recommendations of surgical innovation. Cent European J. Urol. 2015; 68 (4): 459–61
  6. Favaron P.O., Carvalho R.C., Borghesi J., Anunciação A.R., Miglino M.A. The Amniotic Membrane: Development and Potential Applications – A Review. Reprod Domest Anim. 2015; 50 (6): 881–92.
  7. Zelen C.M., Snyder R.J., Serena T.E., Li W.W. The use of human amnion/chorion membrane in the clinical setting for lower extremity repair: a review. Clin Podiatr Med. Surg. 2015; 32 (1): 135–46
  8. Fairbairn N.G., Randolph M.A., Redmond R.W. The clinical applications of human amnion in plastic surgery. J. Plast Reconstr Aesthet Surg. 2014; 67 (5): 662–75.
  9. Amemiya T., Nakamura T., Yamamoto T., Kinoshita S., Kanamura N. Autologous transplantation of oral mucosal epithe-lial cell sheets cultured on an amniotic membrane substrate for intraoral mucosal defects. PLoS One. 2015; 10 (4): e0125391.
  10. Kumar A., Chandra R.V., Reddy A.A., Red-dy B.H., Reddy C., Naveen A. Evaluation of clinical, antiinflammatory and antiinfective properties of amniotic membrane used for guided tissue regeneration: A randomized controlled trial. Dent Res J. (Isfahan). 2015; 12 (2): 127–35
  11. Milyudin E.S., Kuchuk K.E. Primenenie v oftal`mologii silikovysushennoy plastificirovannoy amnioticheskoy membrany «Fleksamer». S``ezd oftal`-mologov Rossii, 10-y: Sb. nauchnyh mate-rialov. M.: Oftal`mologiya, 2015; 320. [Kuchuk K.E., Milyudin E.S. Use of silico-dried plastified amniotic membrane «Fleksamer» in ophthalmology. X Congress of Russian Ophthalmologists M.: Ophthalmology, 2015; 320 (in Russian)]
  12. Fatimah S.S., Ng S.L., Chua K.H., Hayati A.R., Tan A.E., Tan G.C. Value of human amni-otic epithelial cells in tissue engineering for cornea. Hum Cell. 2010; 23 (4): 141–51.
  13. Fukuda K., Chikama T., Nakamura M., Nish-ida T. Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and con-junctiva. Cornea. 1999; 18 (1): 73–9
  14. Lim L.S., Poh R.W., Riau A.K., Beuerman R.W., Tan D., Mehta J.S. Biological and ultrastructural properties of acelagraft, a freeze-dried γ-irradiated human amniotic membrane. Arch Ophthalmol. 2010; 128 (10): 1303–10.
  15. Okabe M., Kitagawa K., Yoshida T., Suzuki T., Waki H., Koike C., Furuichi E., Katou K., Nomura Y., Uji Y., Hayashi A., Saito S., Nikai-do T. Hyperdry human amniotic membrane is useful material for tissue engineering: physical, morphological properties, and safety as the new biological material. J. Biomed. Mater Res A. 2014; 102 (3): 862–70.
  16. Cooke M., Tan E.K., Mandrycky C., He H., O’Connell J., Tseng S.C. Comparison of cryopreserved amniotic membrane and umbilical cord tissue with dehydrated am-niotic membrane/chorion tissue. J. Wound Care. 2014; 23 (10): 465–74.
  17. Duan-Arnold Y., Gyurdieva A., Johnson A., Uveges T.E., Jacobstein D.A., Danilkovitch A. Retention of Endogenous Viable Cells Enhances the Anti-Inflammatory Activity of Cryopreserved Amnion. Adv Wound Care (New Rochelle). 2015; 4 (9): 523–33.
  18. Bomfim Pereira M.G., Pereira Gomes J.A., Rizzo L.V., Cristovam P.C., Silveira L.C. Cytokine Dosage in Fresh and Preserved Human Amniotic Membrane. Cornea. 2016; 35 (1): 89–94.
  19. Akle C.A., Adinolfi M., Welsh K.I., Leibowitz S., McColl I. Immunogenicity of human amni-otic epithelial cells after transplantation into volunteers. Lancet. 1981; 2 (8254): 1003–5
  20. Talmi Y.P., Sigler L., Inge E., Finkelstein Y., Zohar Y. Antibacterial properties of human amniotic membranes. Placenta. 1991; 12 (3): 285–8.
  21. Litwiniuk M., Grzela T. Amniotic membrane: new concepts for an old dressing. Wound Repair Regen. 2014; 22 (4): 451–6.
  22. Hao Y., Ma D.H., Hwang D.G., Kim W.S., Zhang F. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea. 2000; 19 (3): 348–52.
  23. Steed D.L., Trumpower C., Duffy D., Smith C., Marshall V., Rupp R., Robson M. Amnion-derived cellular cytokine solution: a physiological combination of cytokines for wound healing. Eplasty. 2008; 8: e18.
  24. Aya K.L., Stern R. Hyaluronan in wound healing: rediscovering a major player. Wound Repair Regen. 2014; 22 (5): 579–93.
  25. Zhou K., Koike C., Yoshida T., Okabe M., Fathy M., Kyo S., Kiyono T., Saito S., Nikaido T. Establishment and characterization of im-mortalized human amniotic epithelial cells. Cell Reprogram. 2013; 15 (1): 55–67.
  26. Huang L., Wong Y.P., Gu H., Cai Y.J., Ho Y., Wang C.C., Leung T.Y., Burd A. Stem cell-like properties of human umbilical cord lining epithelial cells and the potential for epidermal reconstitution. Cytotherapy. 2011; 13 (2): 145–55.
  27. Davydova D.A., Vorotelyak E.A., Bragina E.E., Terskih V.V., Vasil`ev A.V. Kul`tivirovanie stvolovyh kletok amnioticheskoy zhidkosti cheloveka v trehmernom kollagenovom matrikse. Citologiya. 2011; 53 (4): 325–31. [Davydova D.A., Vorotelyak E.A., Bragina E.E., Terskikh V.V., Vasiliev A.V. Culture of human amniotic fluid stem cells in 3D colla-gen matrix. Tsitologiia. 2011; 53 (4): 325–31 (in Russian)]
  28. Bell E., Ivarsson B., Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci USA. 1979; 76 (3): 1274–8
  29. Sarkisov D.S., Perov Yu.M. Mikroskopicheskaya tehnika. 544 s. M.: Medicina, 1996; 16–20. [Sarkisov D.S., Perov Yu. M. Microscopic technique. 544 p. M.: Medicine, 1996; 16–20 (in Russian)]
  30. Qiu W., Li X., Tang H., Huang A.S., Pan-teleyev A.A., Owens D.M., Su G.H. Condi-tional activin receptor type 1B (Acvr1b) knockout mice reveal hair loss abnormality. J. Invest Dermatol. 2011; 131 (5): 1067–76.
  31. Moll R., Divo M., Langbein L. The human keratins: biology and pathology. Histo-chem Cell Biol. 2008; 129 (6): 705–33.
  32. Fatimah S.S., Chua K., Tan G.C., Azmi T.I., Tan A.E., Abdul Rahman H. Organotypic culture of human amnion cells in air-liquid interface as a potential substitute for skin regenera-tion. Cytotherapy. 2013; 15 (8): 1030–41.
  33. Fatimah S.S., Tan G.C., Chua K.H., Tan A.E., Hayati A.R. Effects of epidermal growth fac-tor on the proliferation and cell cycle regu-lation of cultured human amnion epithelial cells. J. Biosci Bioeng. 2012; 114 (2): 220–7.
  34. Li H., Chu Y., Zhang Z., Zhang G., Jiang L., Wu H., Liu S., Yu C., Jin Y. Construction of bi-layered tissue-engineered skin with human amniotic mesenchymal cells and human amniotic epithelial cells. Artif Organs. 2012; 36 (10): 911–9.
  35. Jiang L.W., Chen H., Lu H. Using human epithelial amnion cells in human de-epidermized dermis for skin regeneration. J. Dermatol. Sci. 2016; 81 (1): 26–34.
  36. Fliniaux I., Viallet J.P., Dhouailly D., Jahoda C.A. Transformation of amnion epithelium into skin and hair follicles. Differentiation. 2004; 72 (9–10): 558–65.
  37. Yang L., Shirakata Y., Tokumaru S., Xiuju D., Tohyama M., Hanakawa Y., Hirakawa S., Sayama K., Hashimoto K. Living skin equiva-lents constructed using human amnions as a matrix. J. Dermatol. Sci. 2009; 56 (3): 188–95
  38. Gain Yu.M., Kiseleva E.P., Shahray S.V. Obosnovanie primeneniya kompleksnogo transplantata na osnove amnioticheskoy membrany i mezenhimal`nyh stvolovyh kletok iz zhirovoy tkani dlya vosstanov-leniya celostnosti kozhnyh pokrovov. Novosti hirurgii. 2012; 20 (4): 9–16. [Gain Yu.M., Kisseleva E.P., Shachrai S.V. Sub-stantiation of complex transplant applica-tion on the basis of amniotic membrane and mesenchymal stem cells from the adipose tissue to restore the cutaneous integrity. Nov-osti Khirurgii. 2012; 20 (4): 9–16 (in Russian)]
  39. Hennerbichler S., Reichl B., Pleiner D., Gabriel C., Eibl J., Redl H. The influence of various storage conditions on cell viability in amniotic membrane. Cell Tissue Bank. 2007; 8 (1): 1–8.
  40. Laurent R., Nallet A., Obert L., Nicod L., Gindraux F. Storage and qualification of viable intact human amniotic graft and technology transfer to a tissue bank. Cell Tissue Bank. 2014; 15 (2): 267–75.
  41. Moon J.H., Lee J.R., Jee B.C., Suh C.S., Kim S.H., Lim H.J., Kim H.K. Successful vitrifica-tion of human amnion-derived mesenchy-mal stem cells. Hum Reprod. 2008; 23 (8): 1760–70.
  42. Miki T., Wong W., Zhou E., Gonzalez A., Garcia I., Grubbs B.H. Biological impact of xeno-free chemically defined cryopreser-vation medium on amniotic epithelial cells. Stem Cell Res Ther. 2016; 7: 8.