DEVELOPMENTAL CHANGES OF THE EXPRESSION OF CALCIUM-BINDING PROTEINS IN AUTONOMIC GANGLIONIC NEURONS

DOI: https://doi.org/None

Masliukov P.M., Nozdrachev A.D., Emanuilov A.I.

Calbindin 28 kDa, calretinin and parvalbumin are referred to calcium-binding proteins which are both widely distributed in the nervous system and selectively expressed in certain population of neurons. These proteins are expressed not only in the central nervous system, but also in the autonomic ganglia. Calbindin and parvalbumin are found in sympathetic ganglia of rodents, calbindin and calretinin are found in metasympathetic intramural ganglia. Their functions are poor understood but one can suggest their important role in the regulation of theCa2+ load of the cell. Сalcium-binding proteins also play an important role in the development of autonomic neurons. There is an increasing of the percentage of сalbindin and calretinin in the metasympathetic intramural ganglia of small intestine in the early postnatal development, whereas in sympathetic ganglia the percentage of calbindin is lower. Possibly, the functional importance of such changes can be explained by the role of calcium currents in the development of neurons and the synaptic transmission.
Keywords: 
сalbindin, calretinin, parvalbumin, autonomic ganglia

Список литературы: 
  1. Andressen C., Blumcke I., Celio M.R. Calcium-binding proteins: selective markers of nerve cells. Cell Tissue Res. 1993; 271: 181–208.
  2. Schwaller B. The continuing disappearance of «pure» Ca2+ buffers. Cell. Mol. Life Sci. 2009; 66: 275–300.
  3. Yano S., Tokumitsu H., Soderling T.R. Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature. 1998; 396: 584–7.
  4. Simons M.J., Pellionisz A.J. Genomics, morphogenesis and biophysics: triangulation of Purkinje cell development. Cerebellum. 2006; 5: 27–35.
  5. Gusev N.B. Vnutrikletochnye Sa-svyazyvayushhie belki. Chast` 1. Klassifikaciya i struktura. Sorovskiy obrazovatel`nyy zhurnal. 1998; 5: 2–9. [Gusev N.B. Intracellular Ca-Binding Proteins. Part 1. Classification and structure. Sorosovskii Obrazovatel’nyi Zhurnal. 1998; 5: 2–9 (in Russian)]
  6. Permyakov E.A. Kal`ciysvyazyvayushhie belki. M.: Nauka, 1993; 190. [Permyakov E.A. Calcium-Binding Proteins. M.: Nauka, 1993; 190 (in Russian)]
  7. Permyakov E.A. Metallsvyazyvayushhie belki: struktura, svoystva, funkcii. M.: Nauchnyy mir, 2012; 544. [Permyakov E.A. Metal- binding protein: Structure, properties, function. M.: Nauchnyi mir, 2012; 544 (in Russian)]
  8. Schwaller B. Cytosolic Ca2+ buffers. Cold Spring Harb. Perspect. Biol. 2010; 11: a004051.
  9. Schwaller B. Calretinin: from a «simple» Ca2+ buffer to a multifunctional protein implicated in many biological processes. Front Neuroanat. 2014; 5 (8): 3.
  10. Broughton B.R., Reutens D.C., Sobey C.G. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009; 40 (5): 331–9.
  11. Mattson M.P. Calcium and neurodegeneration. Aging Cell. 2007; 6 (3): 337–50.
  12. Camandola S., Mattson M.P. Aberrant subcellular neuronal calcium regulation in aging and Alzheimer’s disease. Biochim Biophys Acta. 2011; 1813 (5): 965–73.
  13. Heizmann C.W., Braun K. Changes in Ca(2+)-binding proteins in human neurodegenerative disorders. Trends Neurosci. 1992; 15: 259–64.
  14. Baimbridge K.G., Celio M.R., Rogers J.H. Calcium-binding proteins in the nervous system. Trends Neurosci. 1992; 15: 303–8.
  15. Heizmann C.W. Calcium signaling in the brain. Acta Neurobiol Exp (Wars). 1993; 53 (1): 15–23.
  16. Bastianelli E. Distribution of calcium-binding proteins in the cerebellum. Cerebellum. 2003; 2: 242–62.
  17. Porseva V.V., Shilkin V.V., Strelkov A.A., Maslyukov P.M. Kal`bindin-soderzhashhie neyrony ventral`nogo roga serogo veshhestva spinnogo mozga myshey. Morfologiya. 2014; 146 (4): 21–5. [Porseva V.V., Shilkin V.V., Strelkov A.A., Masliukov P.M. Calbindin-containing neurons of the ventral horn of murine spinal cord gray matter. Morfologiia. 2014; 146 (4): 21–5 (in Russian)]
  18. Grkovic I., Anderson C.R. Calbindin D28K-immunoreactivity identifies distinct subpopulations of sympathetic pre- and postganglionic neurons in the rat. J. Comp. Neurol. 1997; 386: 245–59.
  19. Arciszewski M.B., Calka J., Wasowicz K., Majewski M. Distribution and chemical coding of calretinin- and calbindin-expressing enteric neurons in the duodenum of the sheep. Pol. J. Vet. Sci. 2009; 12 (4): 423–31.
  20. Richardson R.J., Grkovic I., Allen A.M., Anderson C.R. Separate neurochemical classes of sympathetic postganglionic neurons project to the left ventricle of the rat heart. Cell. Tissue Res. 2006; 324: 9–16.
  21. Emanuylov A.I., Moiseev K.Yu., Filippov I.V., Maslyukov P.M. Vozrastnye osobennosti neyronov intramural`nyh uzlov tonkoy kishki, soderzhashhih razlichnye tipy kal`ciy-svyazyvayushhih belkov. Morfologiya. 2014; 146 (6): 33–7. [Emanuilov A.I., Moiseev K.Yu., Filippov I.V., Masliukov P.M. Developmental properties of ganglionic neurons of the small intestine containing different types of the calcium-binding proteins. Morfologiia. 2014; 146 (6): 33–7 (in Russian)]
  22. Maslyukov P.M., Korobkin A.A., Konovalov V.V., Porseva V.V., Emanuylov A.I. Vozrastnoe razvitie kal`bindin-immunopozitivnyh neyronov simpaticheskih uzlov krysy. Morfologiya. 2012; 141 (1): 77–80. [Masliukov P.M., Korobkin A.A., Konovalov V.V., Porseva V.V., Emanuilov A.I. Age-related development of calbindin-immunopositive neurons of rat sympathetic ganglia. Morfologiia. 2012; 141 (1): 77–80 (in Russian)]
  23. Masliukov P.M., Korobkin A.A., Nozdrachev A.D., Timmermans J.P. Calbindin-D28k immunoreactivity in sympathetic ganglionic neurons during development. Auton. Neurosci. 2012; 167 (1–2): 27–33.
  24. Masliukov P.M., Emanuilov A.I., Moiseev K., Nozdrachev A.D., Dobrotvorskaya S., Timmermans J.P. Development of non-catecholaminergic sympathetic neurons in para- and prevertebral ganglia of cats. Int. J. Dev. Neurosci. 2015; 40: 76–84.
  25. Camp A.J., Wijesinghe R. Calretinin: modulator of neuronal excitability. Int. J. Biochem. Cell Biol. 2009; 41 (11): 2118–21.
  26. Cheron G., Schurmans S., Lohof A., d’Alcantara P., Meyer M., Draye J.P., Parmentier M., Schiffmann S.N. Electrophysiological behavior of Purkinje cells and motor coordination in calretinin knock-out mice. Prog. Brain Res. 2000; 124: 299–308.
  27. Cheron G., Servais L., Dan B. Cerebellar network plasticity: from genes to fast oscillation. Neuroscience. 2008; 153 (1): 1–19.
  28. Massouh M., Wallman M.J., Pourcher E., Parent A. The fate of the large striatal interneurons expressing calretinin in Huntington’s disease. Neurosci. Res. 2008; 62 (4): 216–24.
  29. Lutz W., Frank E.M., Craig T.A., Thompson R., Venters R.A., Kojetin D., Cavanagh J., Kumar R. Calbindin D28K interacts with Ran-binding protein M: identification of interacting domains by NMR spectroscopy. Biochem. Biophys. Res. Commun. 2003; 303 (4): 1186–92.
  30. Schmidt H. Three functional facets of calbindin D-28k. Front. Mol. Neurosci. 2012; 5: 25.
  31. Lee D., Obukhov A.G., Shen Q., Liu Y., Dhawan P., Nowycky M.C., Christakos S. Calbindin-D28k decreases L-type calcium channel activity and modulates intracellular calcium homeostasis in response to K+ depolarization in a rat beta cell line RINr1046-38. Cell Calcium 2006; 39: 475–85.
  32. Bellido T., Huening M., Raval-Pandya M., Manolagas S.C., Christakos S. Calbindin-D28k is expressed in osteoblastic cells and suppresses their apoptosis by inhibiting caspase-3 activity. J. Biol. Chem. 2000; 275: 26328–32.
  33. Siechen S., Yang S., Chiba A., Saif T. Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals Proc. Natl. Acad. Sci. USA. 2009; 106: 12611–6.
  34. Heiman M.G., Shaham S. Twigs into branches: how a filopodium becomes a dendrite. Curr. Opin. Neurobiol. 2010; 20 (1): 86–91.
  35. Caillard O., Moreno H., Schwaller B., Llano I., Celio M.R., Marty A. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc. Natl. Acad. Sci. USA. 2000; 97 (24): 13372–7.
  36. Schwaller B., Meyer M., Schiffmann S. «New» functions for «old» proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum. 2002; 1 (4): 241–58.
  37. Orduz D., Bischop D.P., Schwaller B., Schiffmann S.N., Gall D. Parvalbumin tunes spike-timing and efferent short-term plasticity in striatal fast spiking interneurons. J. Physiol. 2013; 591 (13): 3215–32.
  38. Masliukov P.M., Konovalov V.V., Emanuilov A.I., Nozdrachev A.D. Development of neuropeptide Y-containing neurons in sympathetic ganglia of rats. Neuropeptides. 2012; 46 (6): 345–52.
  39. Grkovic I., Anderson C.R. Calretinin-containing preganglionic nerve terminals in the rat superior cervical ganglion surround neurons projecting to the submandibular salivary gland. Brain Res. 1995; 684 (2): 127–35.
  40. Huerta J.J., Nori S., Llamosas M.M., Vázquez M.T., Bronzetti E., Vega J.A. Calretinin immunoreactivity in human sympathetic ganglia. Anat. Embryol. (Berl). 1996; 194 (4): 373–8.
  41. Corns R.A., Boolaky U.V., Santer R.M. Decreased calbindin-D28k immunoreactivity in aged rat sympathetic pelvic ganglionic neurons. Neurosci Lett. 2000; 292 (2): 91–4.
  42. Sayegh A.I., Ritter R.C. Morphology and distribution of nitric oxide synthase-, neurokinin-1 receptor-, calretinin-, calbindin-, and neurofilament-M-immunoreactive neurons in the myenteric and submucosal plexuses of the rat small intestine. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2003; 271 (1): 209–16.
  43. Qu Z.D., Thacker M., Castelucci P., Bagyánszki M., Epstein M.L., Furness J.B. Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res. 2008; 334 (2): 147–61.
  44. Sang Q., Young H.M. Chemical coding of neurons in the myenteric plexus and external muscle of the small and large intestine of the mouse. Cell Tissue Res. 1996; 284 (1): 39–53.
  45. Brookes S.J.H., Steele P.A., Costa M. Calretinin immunoreactivity in cholinergic motor neurones, interneurones and vasomotor neurones in the guinea-pig small intestine. Cell Tissue Res. 1991; 263: 471–81.
  46. Mitsui R. Immunohistochemical analysis of substance P-containing neurons in rat small intestine. Cell Tissue Res. 2011; 343 (2): 331–41.
  47. Song Z.M., Brookes S.J., Costa M. All calbindin-immunoreactive myenteric neurons project to the mucosa of the guinea-pig small intestine. Neurosci. Lett. 1994; 180: 219–22.
  48. Mann P.T., Southwell B.R., Ding Y.Q., Shigemoto R., Mizuno N., Furness J.B. Localisation of neurokinin 3 (NK3) receptor immunoreactivity in the rat gastrointestinal tract. Cell Tissue Res. 1997; 289: 1–9.
  49. Furness J.B., Kunze W.A., Bertrand P.P., Clerc N., Bornstein J.C. Intrinsic primary afferent neurons of the intestine. Prog. Neurobiol. 1998; 54: 1–18.
  50. Resibois A., Vienne G., Pochet R. Calbindin-D28K and the peptidergic neuroendocrine system in rat gut: an immunohistochemical study. Biol. Cell. 1988; 63: 67–75.
  51. Misawa R., Girotti P.A., Mizuno M.S., Liberti E.A., Furness J.B., Castelucci P. Effects of protein deprivation and re-feeding on P2X2 receptors in enteric neurons. World J. Gastroenterol. 2010; 16 (29): 3651–63.
  52. Wilhelm M., Lawrence J.J., Gábriel R. Enteric plexuses of two choline-acetyltransferase transgenic mouse lines: Chemical neuroanatomy of the fluorescent protein-expressing nerve cells. Brain Res. Bull. 2015; 111: 76–83.
  53. Isaacs K.R., Winsky L., Strauss K.I., Jacobowitz D.M. Quadruple colocalization of calretinin, calcitonin gene-related peptide, vasoactive intestinal peptide, and substance P in fibers within the villi of the rat intestine. Cell Tissue Res 1995; 280: 639–51.
  54. Endo T., Onaya T. Immunohistochemical localization of parvalbumin in rat and monkey autonomic ganglia. J. Neurocytol. 1988; 17: 73-7.
  55. Maslyukov P.M. Svyazi neyronov zvezdchatogo gangliya koshki s organami-mishenyami v postnatal`nom ontogeneze. Rossiyskiy fiziologicheskiy zhurnal im. I.M.Sechenova. 2000; 86 (6): 703–10. [Masliukov P.M. Connections of the cat stellate ganglion with target organs during postnatal ontogenesis. Ross. Fiziol. Zh. Im. I. M. Sechenova. 2000; 86 (6): 703–10 (in Russian)]
  56. Maslyukov P.M., Nozdrachev A.D., Timmermans J.P. Vozrastnye osobennosti neyrotransmitternogo sostava neyronov zvezdchatogo uzla. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova. 2006; 92 (2): 214–20. [Masliukov P.M., Nozdrachev A.D., Timmermans J.P. The age specifics of the neurotransmitter composition of the stellate ganglion neurons. Ross. Fiziol. Zh. Im. I. M. Sechenova. 2006; 92 (2): 214–20 (in Russian)]
  57. Nozdrachev A.D., Maslyukov P.M. Vozrastnoe razvitie neyronov avtonomnyh gangliev. SPb.: Inform-Navigator, 2014; 320. [Nozdrachev A.D., Masliukov P.M. Age-dependent development of autonomic neurons. SPb.: Inform-Navigator, 2014; 320 (in Russian)]
  58. Girard F., Venail J., Schwaller B., Celio M.R. The EF-hand Ca(2+)-binding protein super-family: A genome-wide analysis of gene expression patterns in the adult mouse brain. Neuroscience. 2015; 294: 116–55.
  59. Gonzalez-Gomes M., Meyer G. Dynamic expression of calretinin in embryonic and early fetal human cortex. Front. Neuroanat. 2014; 8: 41.
  60. Brandt M., Jessberger S., Steiner B., Kronenberg G., Reuter K., Bick-Sander A., von der Berhens W., Kempermann G. Transient calretinin expression defines early post-mitotic step of neuronal differentiation in adult hippocampal neurogenesis. Mol. Cell Neurosci. 2003; 24: 603–13.
  61. Abrahám H., Veszprémi B., Kravják A., Kovács K., Gömöri E., Seress L. Ontogeny of calbindin immunoreactivity in the human hippocampal formation with a special emphasis on granule cells of the dentate gyrus. Int. J. Dev. Neurosci. 2009; 27: 115–27.
  62. Villa A., Podini P., Panzeri M.C., Racchetti G., Meldolesi J. Cytosolic Ca2+ binding proteins during rat brain ageing: loss of calbindin and calretinin in the hippocampus, with no change in the cerebellum. Eur. J. Neurosci. 1994; 6: 1491–9.
  63. Shetty A.K., Turner D.A., Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats. J. Comp. Neurol. 1998; 394: 252–69.
  64. Amenta F., Cavalotta D., Del Valle M.E., Mancini M., Sabbatini M., Torres J.M., Vega J.A. Calbindin D-28k immunoreactivity in the rat cerebellar cortex: age-related changes. 1994; 178: 131–4.
  65. Iacopino A.M., Christakos S., Specific reduction of calcium binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc. Natl. Acad. Sci. USA. 1990; 87: 4078–82.
  66. Moyer J.R. Jr, Furtak S.C., McGann J.P., Brown T.H. Aging-related changes in calcium-binding proteins in rat perirhinal cortex. Neurobiol. Aging. 2011; 32 (9): 1693–706.
  67. Hao M.M., Moore R.E., Roberts R.R., Nguyen T., Furness J.B., Anderson R.B., Young HM. The role of neural activity in the migration and differentiation of enteric neuron precursors. Neurogastroenterol, Motil. 2010; 22 (5): 127–37.
  68. Hao M.M., Bornstein J.C., Vanden Berghe P., Lomax A.E., Young H.M., Foong J.P.P. The emergence of neural activity and its role in the development of the enteric nervous system. Dev. Biol. 2013; 382 (1): 365–74.
  69. Hao M.M., Young H.M. Development of enteric neuron diversity. J. Cell Mol. Med. 2009; 13 (7): 1193–210.
  70. Satake S., Imoto K. Cav2.1 channels control multivesicular release by relying on their distance from exocytotic Ca2+ sensors at rat cerebellar granule cells. J. Neurosci. 2014; 34 (4): 1462–74.
  71. Rosenberg S.S., Spitzer N.C. Calcium signaling in neuronal development. Cold Spring Harb. Perspect. Biol. 2011; 3 (10): a004259.
  72. Obermair G.J., Szabo Z., Bourinet E., Flucher B.E. Differential targeting of the L-type Ca2+ channel α1C (CaV1.2) to synaptic and extrasynaptic compartments in hippocampal neurons. Eur. J. Neurosci. 2004; 19: 2109–22.
  73. Demarque M., Spitzer N.C. Activity-dependent expression of Lmx1b regulates specification of serotonergic neurons modulating swimming behavior. Neuron. 2010; 67: 321–34.
  74. Chard P.S., Bleakman D., Christakos S., Fullmer C.S., Miller R.J., Calcium buffering properties of calbindin-D28k and parvalbumin in rat sensory neurons. J. Physiol. 1993; 472: 341–57.