THE ROLE OF MOLECULAR AND GENETIC FACTORS IN UVEAL MELANOMA PATHOGENESIS

DOI: https://doi.org/None

Saakyan S.V., Tsygankov A.Iu., Amiryan A.G., Loginov V.I.

Uveal melanoma (UM) is a rare, aggressive intraocular malignant tumor, leading to metastatic disease in more than 50% of patients. Cytogenetic and molecular studies have identified some genetic prognostic factors considered to be reliable to forecast the survival rate of UM patients. The review presents the basic molecular and genetic characteristics of uveal melanoma. Modern diagnostic methods of molecular genetic aberrations including fluorescence hybridization in situ, comparative genomic hybridization, quantitative PCR analysis, loss of heterozygosity, single nucleotide polymorphism analysis, and new generation sequencing are described. The basic chromosomal changes in UM, such as the loss of one copy (monosomy) of chromosome 3, deletion in the short arm of chromosome 1 and chromosome 8q duplication, and disorders involved in the molecular signaling pathways of UM oncogenesis, including RAS-RAF-MEK-ERK and PI3K-PTEN-AKT pathways, are listed. Changes in genes GNAQ/GNA11, BAP1 and other genes are considered in detail. These changes are important for the tumor development. Polymorphism of ABCB1 / MDR1 and its role in the pathogenesis of UM are described. Further research in this field discovers prospects for selective chemotherapy and immunotherapy of UM.
Keywords: 
uvealmelanoma, chromosomal aberrations, gene mutations, polymorphism

Список литературы: 
  1. Saakyan S.V., Amiryan A.G., Cygankov A.Yu., Sklyarova N.V., Zaletaev D.V. Klinicheskie, patomorfologicheskie i molekulyarno-geneticheskie osobennosti uveal`noy melanomy s vysokim riskom metastazirovaniya. Rossiyskiy oftal`mologicheskiy zhurnal. 2015; 9 (2): 47–52. [Saakyan S.V., Amiryan A.G., Tsygankov A.Iu., Skljarova N.V., Zaletaev D.V. Clinical, pathomorphological and molecular genetics aspects of uveal melanoma with high metastatic risk. Russian ophthalmological journal. 2015; 9 (2): 47–52 (in Russian)]
  2. Saakyan S.V., Amiryan A.G., Cygankov A.Yu. Uveal`naya melanoma u detey i podrostkov: analiz sobstvennyh nablyudeniy u 21 bol`nogo. Rossiyskaya pediatricheskaya oftal`mologiya. 2015; 10 (3): 33–6. [Saakyan S.V., Amiryan A.G., Tsygankov A.Iu. Uveal melanoma in children and adolescents: 21 patients analysis. Russian pediatric ophthalmology. 2015; 10 (3): 33–6 (in Russian)]
  3. Saakyan S.V., Cygankov A.Yu., Amiryan A.G., Sklyarova N.V., Zaletaev D.V. Vyzhivaemost` pri uveal`noy melanome: rol` molekulyarno-geneticheskih faktorov. Vestnik oftal`mologii. 2016; 1: 3-9. [Saakyan S.V., Tsygankov A.Yu., Amiryan A.G., Sklyarova N.V., Zaletaev D.V. Role of molecular and genetic changes in survival from uveal melanoma. Annals of ophthalmology. 2016; 1: 3-9. (in Russian)].
  4. Manohina I.K., Zemlyakova V.V., Sklyarova N.V., Saakyan S.V., Zaletaev D.V. Sravnitel`nyy analiz molekulyarnyh narusheniy v patogeneze uveal`noy melanomy i melanomy kozhi. Rossiyskiy oftal`mologicheskiy zhurnal. 2010; 2: 13–5. [Manokhina I.K., Zemlyakova V.V., Skljarova N.V., Saakyan S.V., Zaletaev D.V. Comparative analysis of molecular abnormalities in uveal and skin melanoma. Russian ophthalmological journal. 2010; 2: 13–5 (in Russian)]
  5. Bayani J., Selvarajah S., Maire G., Vukovic B., Al-Romaih K., Zielenska M., Squire J.A. Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin Cancer Biol. 2007; 17 (1): 5–18.
  6. Nguyen H.G., Ravid K. Tetraploidy/aneuploidy and stem cells in cancer promotion: The role of chromosome passenger proteins. J. Cell. Physiol. 2006; 208 (1): 12–22.
  7. Castedo M., Coquelle A., Vitale I., Vivet S., Mouhamad S., Viaud S., Zitvogel L., Kroemer G. Selective resistance of tetraploid cancer cells against DNA damage-induced apoptosis. Ann N Y Acad Sci, 2006; 1090: 35–49.
  8. Mehnert J.M., Kluger H.M. Driver mutations in melanoma: lessons learned from bench-to-bedside studies. Curr Oncol Rep. 2012; 14 (5): 449–57.
  9. Manohina I.K., Sklyarova N.V., Saakyan S.V., Zaletaev D.V. Analiz allel`nyh poter` v uveal`nyh melanomah. Medicinskaya genetika. 2008; 6 (72): 19–23. [Manokhina I.K., Skljarova N.V., Saakyan S.V., Zaletaev D.V. Analysis of allels loss in uveal melanoma. Medical genetics. 2008; 6 (72): 19–23 (in Russian)]
  10. Harbour J.W. Molecular prognostic testing and individualized patient care in uveal melanoma. Am J Ophthalmol. 2009; 148 (6): 823–9.
  11. Prescher G., Bornfeld N., Hirche H., Horsthemke B., Jöckel K.H., Becher R. Prognostic implications of monosomy 3 in uveal melanoma. Lancet. 1996; 347 (9010): 1222–5.
  12. Aalto Y., Eriksson L., Seregard S., Larsson O., Knuutila S. Concomitant loss of chromosome 3 and whole arm losses and gains of chromosome 1, 6, or 8 in metastasizing primary uveal melanoma. Invest Ophthalmol Vis Sci. 2001; 42 (2): 313–7.
  13. Onken M.D., Worley L.A., Person E., Char D.H., Bowcock A.M., Harbour J.W. Loss of heterozygosity of chromosome 3 detected with single nucleotide polymorphisms is superior to monosomy 3 for predicting metastasis in uveal melanoma. Clin Cancer Res. 2007; 13 (10): 2923–7.
  14. Kilic E., Naus N.C., van Gils W., Klaver C.C., van Til M.E., Verbiest M.M., Stijnen T., Mooy C.M., Paridaens D., Beverloo H.B., Luyten G.P., de Klein A. Concurrent loss of chromosome arm 1p and chromosome 3 predicts a decreased disease-free survival in uveal melanoma patients. Invest Ophthalmol Vis Sci. 2005; 46 (7): 2253–7.
  15. Patel M., Smyth E.C., Chapman P.B., Wolchok J.D., Schwartz G.K., Abramson D.H., Carvajal R.D. Therapeutic Implications of the Emerging Molecular Biology of Uveal Melanoma. Clin Cancer Res. 2011; 17 (8): 2087–100.
  16. Ehlers J.P., Worley L., Onken M.D., Harbour J.W. Integrative genomic analysis of aneuploidy in uveal melanoma. Clin Cancer Res. 2008; 14 (1): 115–22.
  17. White J.S., McLean I.W., Becker R.L., Director-Myska A.E., Nath J. Correlation of comparative genomic hybridization results of 100 archival uveal melanomas with patient survival. Cancer Gene Cytogenet. 2006; 170 (1): 29–39.
  18. Mensink H.W., Kilic E., Vaarwater J., Douben H., Paridaens D., de Klein A. Molecular cytogenetic analysis of archival uveal melanoma with known clinical outcome. Cancer Gene Cytogenet. 2008; 181 (2): 108–11.
  19. Vajdic C.M., Hutchins A.M., Kricker A., Aitken J.F., Armstrong B.K., Hayward N.K., Armes J.E. Chromosomal gains and losses in ocular melanoma detected by comparative genomic hybridization in an Australian population-based study. Cancer Gene Cytogenet. 2003; 144 (1): 12–7.
  20. Bignell G.R., Huang J., Greshock J., Watt S., Butler A., West S., Grigorova M., Jones K.W., Wei W., Stratton M.R., Futreal P.A., Weber B., Shapero M.H., Wooster R. High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res. 2004; 14 (2): 287–95.
  21. Van den Bosch T., Kilic E., Paridaens D., de Klein A. Genetics of uveal melanoma and cutaneous melanoma: two of a kind? Dermatol Res Pract. 2010; 2010: 360136.
  22. Cygankov A.Yu., Saakyan S.V., Amiryan A.G. Rol` molekulyarno-geneticheskih faktorov v vyzhivaemosti pacientov s uveal`noy melanomoy ciliohorioidal`noy lokalizacii. Medicinskiy vestnik Bashkortostana. 2014; 9 (2): 147–50. [Tsygankov A.Iu., Saakyan S.V., Amiryan A.G. Role of molecular and genetic factors in survival rate of ciliary body uveal melanoma patients. Medicinskij vestnik Bashkortostana. 2014; 9 (2): 147–50 (in Russian)]
  23. Rishi P., Koundanya V.V., Shields C. Using risk factors for detection and prognostication of uveal melanoma. Indian J. Ophthalmol. 2015; 63: 110–6.
  24. Worley L.A., Onken M.D., Person E., Robirds D., Branson J., Char D.H., Perry A., Harbour J.W. Transcriptomic versus chromosomal prognostic markers and clinical outcome in uveal melanoma. Clin Cancer Res. 2007; 13 (5): 1466–71.
  25. Van Gils W., Lodder E.M., Mensink H.W., Kiliç E., Naus N.C., Brüggenwirth H.T., van Ijcken W., Paridaens D., Luyten G.P., de Klein A. Gene expression profiling in uveal melanoma: two regions on 3p related to prognosis. Invest Ophthalmol Vis Sci. 2008; 49 (10): 4254–62.
  26. Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 2007; 8 (4): 286–98.
  27. Dumitrescu R.G. Epigenetic markers of early tumor development. Methods Mol. Biol. 2012; 863: 3–14.
  28. Merbs S.L., Sidransky D. Analysis of p16 (CDKN2/MTS-1/INK4A) alterations in primary sporadic uveal melanoma. Invest Ophthalmol Vis Sci. 1999; 40 (3): 779–83.
  29. Maat W., van der Velden P.A., Out-Luiting C., Plug M., Dirks-Mulder A., Jager M.J., Gruis N.A. Epigenetic inactivation of RASSF1a in uveal melanoma. Invest Ophthalmol Vis Sci. 2007; 48 (2): 486–90.
  30. Moulin A.P., Clement G., Bosman F.T., Zografos L., Benhattar J. Methylation of CpG island promoters in uveal melanoma. Br. J. Ophthalmol. 2008; 92 (2): 281–5.
  31. Inamdar G.S., Madhunapantula S.V., Robertson G.P. Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochem Pharmacol. 2010; 80 (5): 624–37.
  32. Kovchina K.M., Belyakov K.S., Lihvanceva V.G., Anurova O.A., Mazurenko N.N. Mutacii v genah KIT, GNAQ, BRAF i RAS u bol`nyh uveal`noy melanomoy. Sarkomy kostey, myagkih tkaney i opuholi kozhi. 2011; 3: 48–52. [Kovchina K.M., Beljakov K.S., Lihvanceva V.G., Anurova O.A., Mazurenko N.N. Mutations in KIT, GNAQ, BRAF and RAS genes in uveal melanoma patients. Sarcomas of bones, soft tissues and skin tumors. 2011; 3: 48–52 (in Russian)]
  33. Zuidervaart W., van Nieuwpoort F., Stark M., Dijkman R., Packer L., Borgstein A.M., Pavey S., van der Velden P., Out C., Jager M.J., Hayward N.K., Gruis N.A. Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS. Br. J. Cancer. 2005; 92 (11): 2032–8.
  34. Pollock P.M., Harper U.L., Hansen K.S., Yudt L.M., Stark M., Robbins C.M., Moses T.Y., Hostetter G., Wagner U., Kakareka J., Salem G., Pohida T., Heenan P., Duray P., Kallioniemi O., Hayward N.K., Trent J.M., Meltzer P.S. High frequency of BRAF mutations in nevi. Nat Genet. 2003; 33 (1): 19–20.
  35. Kilic E., Bruggenwirth H.T., Verbiest M.M., Zwarthoff E.C., Mooy N.M., Luyten G.P., de Klein A. The RAS-BRAF kinase pathway is not involved in uveal melanoma. Melanoma Res. 2004; 14 (3): 203–5.
  36. Calipel A. Mouriaux F. Glotin A.L., Malecaze F., Faussat A.M., Mascarelli F. Extracellular signal-regulated kinase-dependent proliferation is mediated through the protein kinase A/B-Raf pathway in human uveal melanoma cells. J. Biol. Chem. 2006; 281 (14): 9238–50.
  37. Van Raamsdonk C.D., Bezrookove V., Green G., Bauer J., Gaugler L., O’Brien J.M., Simpson E.M., Barsh G.S., Bastian B.C. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature. 2009; 457 (7229): 599–602.
  38. Van Raamsdonk C.D., Griewank K.G., Crosby M.B., Garrido M.C., Vemula S., Wiesner T., Obenauf A.C., Wackernagel W., Green G., Bouvier N., Sozen M.M., Baimukanova G., Roy R., Heguy A., Dolgalev I., Khanin R., Busam K., Speicher M.R., O’Brien J., Bastian B.C. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 2010; 363 (23): 2191–9.
  39. Saakyan S.V., Amiryan A.G., Cygankov A.Yu., Loginov V.I., Burdennyy A.M. Mutacii v onkogenah GNAQ i GNA11 u bol`nyh uveal`noy melanomoy. Molekulyarnaya medicina. 2014; 2: 34–7. [Saakyan S.V., Amiryan A.G., Tsygankov A.Iu., Loginov V.I., Burdenny A.M. Mutations in GNAQ and GNA11 oncogenes in uveal melanoma patients. Molecular medicine. 2014; 2: 34–7 (in Russian)]
  40. Onken M.D., Worley L.A., Long M.D., Duan S., Council M.L., Bowcock A.M., Harbour J.W. Oncogenic mutations in GNAQ occur early in uveal melanoma. Invest Ophthalmol Vis Sci. 2008; 49 (12): 5230–4.
  41. Sisley K., Doherty R., Sross N.A. What hope for the future? GNAQ and uveal melanoma. Br. J. Ophthalmol. 2011; 95 (5): 620–3.
  42. Dratviman–Storobinsky O., Cohen Y., Frenkel S., Pe’er J., Goldenberg-Cohen N. Lack of oncogenic GNAQ mutations in melanocytic lesions of the conjunctiva as compared to uveal melanoma. Invest Ophthalmol Vis Sci. 2010; 51 (12): 6180–2.
  43. Ehlers J.P., Harbour J.W. Molecular pathobiology of uveal melanoma. Int Ophthalmol Clin. 2006; 46 (1): 167–80.
  44. Harbour J.W., Onken M.D., Roberson E.D., Duan S., Cao L., Worley L.A., Council M.L., Matatall K.A., Helms C., Bowcock A.M. Frequent mutation of BAP1 in metastasizing uveal melanomas. Science. 2010; 330 (6009): 1410–3.
  45. Patel K.A., Edmondson N.D., Talbot F., Parsons M.A., Rennie I.G., Sisley K. Prediction of prognosis in patients with uveal melanoma using fluorescence in situ hybridisation. Br. J. Ophthalmol. 2001; 85 (12): 1440–4.
  46. Coupland S.E., Anastassiou G., Stang A., Schilling H., Anagnostopoulos I., Bornfeld N., Stein H. The prognostic value of cyclin D1, p53, and MDM2 protein expression in uveal melanoma. J. Pathol. 2000; 191 (2): 120–6.
  47. Saakyan S.V., Amiryan A.G., Cygankov A.Yu., Loginov V.I., Burdennyy A.M. Associaciya gena ABCB1 s riskom razvitiya uveal`noy melanomy. Arhiv patologii. 2014; 76 (2): 3–7. [Saakyan S.V., Amiryan A.G., Tsygankov A.Iu., Loginov V.I., Burdenny A.M. Association of ABCB1 gene with the risk of uveal melanoma development. Arkhiv of pathology. 2014; 76 (2): 3–7 (in Russian)]
  48. Landreville S., Agapova O.A., Kneass Z.T., Salesse C., Harbour J.W. ABCB1 identifies a subpopulation of uveal melanoma cells with high metastatic propensity. Pigment Cell Melanoma Res. 2011; 24 (3): 430–7.
  49. Sullivan R.J., Atkins M.B. Molecular targeted therapy for patients with melanoma: the promise of MAPK pathway inhibition and beyond. Expert Opin Investig Drugs. 2010; 19 (10): 1205–16.
  50. Triozzi P.L., Eng C., Singh A.D. Targeted therapy for uveal melanoma. Cancer Treat Rev. 2008; 34 (3): 247–58.