SENSITIVITY ANALYSIS OF THE PROTON TRANSPORT THROUGH THE HALF-CHANNELS OF FoF1-ATP SYNTHASE TO TRANSMEMBRANE POTENTIAL CHANGES

DOI: https://doi.org/10.29296/24999490-2019-03-04

SENSITIVITY ANALYSIS OF THE PROTON TRANSPORT THROUGH THE HALF-CHANNELS OF FoF1-ATP SYNTHASE TO TRANSMEMBRANE POTENTIAL CHANGES L.A. Ivontsin, E.V. Mashkovtseva, Ya.R. Nartsissov Research Institute of Cytochemistry and Molecular Pharmacology, 6th Radialnaya str., 24/14, Moscow, 115404, Russian Federation Е-mail: [email protected]

Introduction. ATP is one of the most frequently updated molecules in the organism. The presence of a transmembrane gradient of H+ electrochemical potential is a crucial condition for the synthesis of ATP using FоF1-ATP synthase enzyme, which affects proton transport through the Fо factor. The aim of the study was to evaluate the effect of the transmembrane potential on the proton transport parameters through the inlet half-channel of FоF1-ATP synthase taking into account its possible spatial polymorphism. Methods. A combined approach is used for proton motion modeling. Probability of proton transfer is determined by a quantum-mechanical approach of one-dimensional motion and the problem of proton transport through a sequence of charged centers in the half-channel is considered in the framework of the stochastic approach. Results. The values of the proton transport times obtained in the model of 10 -10–10 -8 s are in a good accordance with the experimental estimates of the ion transfer time in various biological objects for the certain physicochemical characteristics. In the range of physiological values of the membrane potential, the time was almost unchanged. Linear dependence between the transport time and the membrane potential was established for the transmembrane oriented 1C17 pdb-structure, which led to a time increase by 11% without the potential. In case of the laterally oriented 5T4O pdb-structure the transport became slower, however, no apparent linear dependence has been identified. Conclusion. The results obtained in this work can be used to evaluate the proton current through the half-channel and the contribution of transport time to the total time of ATP synthesis. In addition, proton transport adaptability analysis enlightens the additional vulnerability points of the catalytic cycle of FоF1-ATP synthase in case of integrality problems and membrane characteristics changes.
Keywords: 
membrane proteins, FоF1-ATP synthase, proton transport, membrane potential, quantum mechanics

Список литературы: 
  1. Bonora M., Patergnani S., Rimessi A., Marchi E., Suski J., Bononi A., Giorgi C., Marchi S., Missiroli S., Poletti F., Wieckowski M., PintonP. ATP synthesis and storage. Purinergic Signalling. 2012; 8 (3): 343–57. https://doi.org/10.1007/s11302-012-9305-8
  2. 2. Ржешевский А.В. Снижение синтеза АТФ и дисфункция биологических мембран. Два возможных ключевых звена в развитии феноптоза. Биохимия. 2014; 79 (10): 1300–15. [Rzheshevsky A.V. Decrease in ATP biosynthesis and dysfunction of biological membranes. Two possible key mechanisms of phenoptosis. Biochemistry (Moscow). 2014; 79 (10): 1056–68 (in Russian)]
  3. 3. Mashkovtseva E., Boronovsky S., Nartsissov Ya. Combined mathematical methods in the description of the FоF1-ATP synthase catalytic cycle. Mathematical Biosciences. 2013; 243 (1): 117–25. https://doi.org/10.1016/j.mbs.2013.02.013
  4. 4. Boyer P. What makes ATP synthase spin? Nature. 1999; 402: 247–9. https://doi.org/10.1038/46193
  5. 5. Altendorf K., Stalz W., Greie J., Deckers-Hebestreit G. Structure and function of the F(o) complex of the ATP synthase from Escherichia coli. J. of Experimental Biology. 2000; 203 (1): 19–28.
  6. 6. Nesci S., Trombetti F., Ventrella V., Pagliarani A. The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives. 2016; 249: 11–21. https://doi.org/10.1007/s00232-015-9860-3
  7. 7. Allegretti M., Klusch N., Mills D., Vonck J., Kühlbrandt W., Davies K. Horizontal membrane-intrinsic α-helices in the stator a-subunit of an F-type ATP synthase. Nature. 2015; 521: 237–40. https://doi.org/10.1038/nature14185
  8. 8. Sobti M., Smits C., Wong A., Ishmukhametov R., Stock D., Sandin S., Stewart A. Cryo-EM structures of the autoinhibited E. coli ATP synthase in three rotational states. Elife. 2016; 5: e21598. https://doi.org/10.7554/eLife.21598
  9. 9. Fillingame R., Steed P. Half channels mediating H(+) transport and the mechanism of gating in the Fo sector of Escherichia coli F1Fo ATP synthase. Biochimica et BiophysicaActa. 2014; 1837 (7): 1063–8. https://doi.org/10.1016/j.bbabio.2014.03.005
  10. 10. Morozenko A., Stuchebrukhov A. Dowser++, a New Method of Hydrating Protein Structures. Proteins. 2016; 84 (10): 1347–57. https://doi.org/10.1002/prot.25081
  11. 11. Ernst J., Clubb R., Zhou H., Gronenborn A., Clore G. Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR. Science. 1995; 267: 1813–7. https://doi.org/10.1126/science.7892604
  12. 12. Covalt J., Roy M., Jennings P. Core and surface mutations affect folding kinetics, stability and cooperativity in IL-1 beta: does alteration in buried water play a role? J. of Molecular Biology. 2001; 307 (2): 657–69. https://doi.org/10.1006/jmbi.2001.4482
  13. 13. Скулачев В.П., Богачев А.В., Каспаринский Ф.О. Мембранная биоэнергетика. М.: Издательство Московского университета; 2010. [Skulachev V.P., Bogachev A.V., Kasparinskiy F.O. Membrane Bioenergy. М.: Izdatel’stvo Moskovskogo universiteta; 2010 (in Russian)]
  14. 14. Junge W., Nelson N. ATP Synthase. Annual review of biochemistry. 2015; 84 (1): 631–57. https://doi.org/10.1146/annurev-biochem-060614-034124
  15. 15. Романовский Ю.М., Тихонов А.Н. Молекулярные преобразователи энергии живой клетки. Протонная АТФ-синтаза — вращающийся молекулярный мотор. Успехи физических наук. 2010; 180 (9): 931–56. https://doi.org/10.3367/UFNr.0180.201009b.0931 [Romanovsky Yu.M., Tikhonov A.N. Molecular energy transducers of the living cell. Proton ATP synthase: a rotating molecular motor. Physics-Uspekhi. 2010; 53 (9): 893–914. https://doi.org/10.3367/UFNe.0180.201009b.0931 (in Russian)]
  16. 16. Ягужинский Л.С., Мотовилов К.А., Волков Е.М., Еремеев С.А. О взаимодействии поверхностно-активного основания с фракцией мембраносвязанных протонов Вильямса. Биофизика. 2013; 58 (1): 117–25. [Yaguzhinsky L.S., Motovilov K.A., Volkov E.M., Eremeev S.A. Interaction of a surface-active base with the fraction of membrane-bound Williams’ protons. Biophysics. 2013; 58 (1): 117–25. https://doi.org/10.1134/S0006350913010181]
  17. 17. Mulkidjanian A., Heberle J., Cherepanov D. Protons @ interfaces: implications for biological energy conversion. Biochimica et Biophysica Acta. 2006; 1757 (8): 913–30. https://doi.org/10.1016/j.bbabio.2006.02.015
  18. 18. Ivontsin L., Mashkovtseva E., Nartsissov Ya. Quantum-mechanical analysis of amino acid residues function in the proton transport during FoF1-ATP synthase catalytic cycle. Journal of Physics: Conference Series. 2017; 917 (4): 042004. https://doi.org/10.1088/1742-6596/917/4/042004
  19. 19. Rastogi V., Girvin M. Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature. 1999; 402: 263–8. https://doi.org/10.1038/46224
  20. 20. Ivontsin L., Mashkovtseva E., Nartsissov Ya. Simulation of proton movement in FoF1-ATP synthase by quantum-mechanical approach. Journal of Physics: Conference Series. 2017; 784 (1): 012021. https://doi.org/10.1088/1742-6596/784/1/012021
  21. 21. Feniouk B., Kozlova M., Knorre D., Cherepanov D., Mulkidjanian A., Junge W. The Proton-Driven Rotor of ATP Synthase: Ohmic Conductance (10 fS), and Absence of Voltage Gating. Biophysical J. 2004; 86 (6): 4094–109. https://doi.org/10.1529/biophysj.103.036962