TRANSCRIPTOME ANALYSIS IN ONCOLOGY AND DERMATOLOGY

DOI: https://doi.org/10.29296/24999490-2022-01-01

E.Y. Sergeeva, Y.A. Fefelova, Y.V. Bardezkaya Professor V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Partizana Zheleznyaka str., 1, Krasnoyarsk, 660022, Russian Federation

Personalized therapy allows to reveal subtypes of diseases with similar symptoms but various molecular mechanisms of development. Different -omics (genomics, epigenomics, transcriptomics, proteomics ets) are used to divide the diseases into subtypes. Transcriptomics is the investigation of whole RNA profile coding by the genome of single cell in specific time period or under specific circumstances. Transcriptome is all RNA transcripts produced by the genome in some time. The aim of the review is to summarize the modern data on perspective methods of investigation – microarray and next generation sequencing (NGS), to disclose the advantages and peculiarities of every method and the use in dermatology and oncology. Material and methods. The materials are the results of the investigations on the theme of russian and foreign researchers and ours published data over the past 13 years, from 2007 till 2020. The data was obtained from biomedical on-line databases PubMed, EMBASE, MedLine. Results. Modern data on microarray and next generation sequencing in the context of transcriptome investigations are summarized in the article. The choice of method is based on the peculiarities and tasks of the investigation. Recently transcriptome investigations are used in many medicine fields including oncology and dermatology that promotes the development of personalized therapy and precise prognosis of diseases. Conclusion. Transcriptome investigations allow to assess the alterations of gene expression profile after the influence of etiologic factors that extends the understanding of diseases pathogenesis and leads to the increased effectivity of therapy
Keywords: 
transcriptome, microarray, sequencing, personalized therapy

Список литературы: 
  1. Ruksha T.G., Aksenenko M.B., Sergeeva E.Ju., Fefelova Ju.A. Melanoma kozhi: ot sistemnoj biologii k personifitsirovannoj terapii. Vestnik dermatologii i venerologii. 2013; 1: 4–8. [Ruksha T.G., Aksenenko M.B., Sergeyeva Ye.Yu., Fefelova Yu.A. Skin melanoma: from systematic biology to the personalized therapy. Vestnik Dermatologii i Venerologii. 2013; 1: 4–8 (in Russian)]
  2. Aldridge S., Teichmann S.A. Single cell transcriptomics comes of age. Nat. Commun. 2020; 11 (1): 4307. https://doi.org/10.1038/s41467-020-18158-5
  3. Chu C., Fang Z., Hua X., Yang Y., Chen E., Cowley A.W. Jr., Liang M., Liu P., Lu Y. deGPS is a powerful tool for detecting differential expression in RNA-sequencing studies. BMC Genomics. 2015; 16 (1): 455. https://doi.org/10.1186/s12864-015-1676-0
  4. Royce T.E., Rozowsky J.S., Gerstein M.B. Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res. 2007; 35 (15): e99. https://doi.org/10.1093/nar/gkm549
  5. Wang Z., Gerstein M., Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009; 10 (1): 57–63. https://doi.org/10.1038/nrg2484
  6. Yousef M., Kumar A., Bakir-Gungor B. Application of biological domain knowledge based feature selection on gene expression data. Entropy (Basel). 2020; 23 (1): 2. https://doi.org/10.3390/e23010002
  7. Perscheid C., Grasnick B., Uflacker M. Integrative gene selection on gene expression data: providing biological context to traditional approaches. J. Integr. Bioinform. 2018; 16 (1): 20180064. https://doi.org/10.1515/jib-2018-0064
  8. Piñero J., Bravo À., Queralt-Rosinach N., Gutiérrez-Sacristán A., Deu-Pons J., Centeno E., Garcia-Garcia J., Sanz F., Furlong L.I. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017; 45 (D1): 833–9. https://doi.org/10.1093/nar/gkw943
  9. Cloonan N., Forrest A.R., Kolle G., Gardiner B.B., Faulkner G.J., Brown M.K., Taylor D.F., Steptoe A.L., Wani S., Bethel G., Robertson A.J., Perkins A.C., Bruce S.J., Lee C.C., Ranade S.S., Peckham H.E., Manning J.M., McKernan K.J., Grimmond S.M. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat. Methods. 2008; 5 (7): 613–9. https://doi.org/10.1038/nmeth.1223
  10. Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M., Snyder M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science. 2008; 320 (5881): 1344–9. https://doi.org/10.1126/science.1158441
  11. Song Y., Xu X., Wang W., Tian T., Zhu Z., Yang C. Single cell transcriptomics: moving towards multi-omics. Analyst. 2019; 144 (10): 3172–89. https://doi.org/10.1039/c8an01852a
  12. Tokura Y., Hayano S. Subtypes of atopic dermatitis: From phenotype to endotype. Allergol. Int. 2021; S1323-8930(21)00079-4. https://doi.org/10.1016/j.alit.2021.07.003
  13. Tao Z., Shi A., Li R., Wang Y., Wang X, Zhao J. Microarray bioinformatics in cancer- a review. J. BUON. 2017; 22 (4): 838–43.
  14. Stark R., Grzelak M., Hadfield J. RNA sequencing: the teenage years. Nat. Rev. Genet. 2019; 20 (11): 631–56. https://doi.org/10.1038/s41576-019-0150-2
  15. Efremova M., Teichmann S.A. Computational methods for single-cell omics across modalities. Nat. Methods. 2020; 17 (1): 14–7. https://doi.org/10.1038/s41592-019-0692-4
  16. Aksenenko M.B., Komina A.V., Palkina N.V., Averchuk A.S., Rybnikov Ju.A., Dyhno Ju.A., Ruksha T.G. Transkriptomnyj analiz kletok melanomy, poluchennyh iz razlichnyh uchastkov pervichnoj opuholi. Sibirskij onkologicheskij zhurnal. 2018; 17 (4): 59–66. https://doi.org/10.21294/1814-4861-2018-17-4-59-66 [Aksenenko M.B., Komina A.V., Palkina N.V., Averchuk A.S., Rybnikov Yu.A., Dyhno Yu.A., Ruksha T.G. Transcriptomic analysis of melanoma cells extracted from different sites of the primary tumor. Sibirskij onkologičeskij žurnal. 2018; 17 (4): 59–66 (in Russian)]
  17. Hoek K.S., Eichhoff O.M., Schlegel N.C., Döbbeling U., Kobert N., Schaerer L., Hemmi S., Dummer R. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 2008; 68 (3): 650–6. https://doi.org/10.1158/0008-5472.CAN-07-2491
  18. Kim K., Park S., Park S.Y., Kim G., Park S.M., Cho J.W., Kim D.H., Park Y.M., Koh Y.W., Kim H.R., Ha S.J., Lee I. Single-cell transcriptome analysis reveals TOX as a promoting factor for T cell exhaustion and a predictor for anti-PD-1 responses in human cancer. Genome Med. 2020; 12 (1): 22. https://doi.org/10.1186/s13073-020-00722-9
  19. Marie K.L., Sassano A., Yang H.H., Michalowski A.M., Michael H.T., Guo T., Tsai Y.C., Weissman A.M., Lee M.P., Jenkins L.M., Zaidi M.R., Pérez-Guijarro E., Day C.P., Ylaya K., Hewitt S.M., Patel N.L., Arnheiter H., Davis S., Meltzer P.S., Merlino G., Mishra P.J. Melanoblast transcriptome analysis reveals pathways promoting melanoma metastasis. Nat. Commun. 2020; 11 (1): 333. https://doi.org/10.1038/s41467-019-14085-2
  20. Ruksha T.G., Prohorenkov V.I., Salmina A.B., Petrova L.L., Trufanova L.V. Sovremennye predstavlenija ob etiologii i patogeneze melanomy kozhi. Vestnik dermatologii i venerologii. 2007; 5: 22–8. [Ruksha T.G., Prokhorenkov V.I., Salmina A.B., Petrova L.L., Trufanova L.V. Modern concepts of etiology and pathogenesis of skin melanoma. Vestnik dermatologii i venerologii. 2007; 5: 22–8 (in Russian)]
  21. Gyrylova S.N., Aksenenko M.B., Gavrilyuk D.V., Palkina N.V., Dyhno Y.A., Ruksha T.G., Artyukhov I.P. Melanoma incidence mortality rates and clinico-pathological types in the Siberian area of the Russian Federation. Asian Pac. J. Cancer Prev. 2014; 15 (5): 2201–4. https://doi.org/10.7314/apjcp.2014.15.5.2201
  22. Aksenenko M.B., Kirichenko A.K., Ruksha T.G. Russian study of morphological prognostic factors characterization in BRAF-mutant cutaneous melanoma. Pathol. Res. Pract. 2015; 211 (7): 521–7. https://doi.org/10.1016/j.prp.2015.03.005
  23. Chen W., Cheng P., Jiang J., Ren Y., Wu D., Xue D. Epigenomic and genomic analysis of transcriptome modulation in skin cutaneous melanoma. Aging (Albany NY). 2020; 12 (13): 12703–25. https://doi.org/10.18632/aging.103115
  24. Grasso C.S., Tsoi J., Onyshchenko M., Abril-Rodriguez G., Ross-Macdonald P., Wind-Rotolo M., Champhekar A., Medina E., Torrejon D.Y., Shin D.S., Tran P., Kim Y.J., Puig-Saus C., Campbell K., Vega-Crespo A., Quist M., Martignier C., Luke J.J., Wolchok J.D., Johnson D.B., Chmielowski B., Hodi F.S., Bhatia S., Sharfman W., Urba W.J., Slingluff C.L. Jr., Diab A., Haanen J.B.A.G., Algarra S.M., Pardoll D.M., Anagnostou V., Topalian S.L., Velculescu V.E., Speiser D.E., Kalbasi A., Ribas A. Conserved interferon-γ signaling drives clinical response to immune checkpoint blockade therapy in melanoma. Cancer Cell. 2020; 38 (4): 500–15. e3. https://doi.org/10.1016/j.ccell.2020.08.005
  25. Riaz N., Havel J.J., Makarov V., Desrichard A., Urba W.J., Sims J.S., Hodi F.S., Martin-Algarra S., Mandal R., Sharfman W.H., Bhatia S., Hwu W.J., Gajewski T.F., Slingluff C.L. Jr., Chowell D., Kendall S.M., Chang H., Shah R., Kuo F., Morris L.G.T., Sidhom J.W., Schneck J.P., Horak C.E., Weinhold N., Chan T.A. Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell. 2017; 171 (4): 934–49. e16. https://doi.org/10.1016/j.cell.2017.09.028
  26. Pu M., Messer K., Davies S.R., Vickery T.L., Pittman E., Parker B.A., Ellis M.J., Flatt S.W., Marinac C.R., Nelson S.H., Mardis E.R., Pierce J.P., Natarajan L. Research-based PAM50 signature and long-term breast cancer survival. Breast Cancer Res. Treat. 2020; 179 (1): 197–206. https://doi.org/10.1007/s10549-019-05446-y
  27. Wang L., Wang Y., Su B., Yu P., He J., Meng L., Xiao Q., Sun J., Zhou K., Xue Y., Tan J. Transcriptome-wide analysis and modelling of prognostic alternative splicing signatures in invasive breast cancer: a prospective clinical study. Sci. Rep. 2020; 10 (1): 16504. https://doi.org/10.1038/s41598-020-73700-1
  28. Lin Q.G., Liu W., Mo Y.Z., Han J., Guo Z.X., Zheng W., Wang J.W., Zou X.B., Li A.H., Han F. Development of prognostic index based on autophagy-related genes analysis in breast cancer. Aging (Albany NY). 2020; 12 (2): 1366–76. https://doi.org/10.18632/aging.102687
  29. Bell R., Barraclough R., Vasieva O. Gene expression meta-analysis of potential metastatic breast cancer markers. Curr. Mol. Med. 2017; 17 (3): 200–10. https://doi.org/10.2174/1566524017666170807144946
  30. Ruksha T.G., Aksenenko M.B., Klimina G.M., Novikova L.V. Vnekletochnyj matriks kozhi: rol' v razvitii dermatologicheskih zabolevanij. Vestnik dermatologii i venerologii. 2013; 89 (6): 32–9. [Ruksha T.G., Aksenenko M.B., Klimina G.M., Novikova L.V. Extracellular matrix of the skin: role in the development of dermatological diseases. Vestnik dermatologii i venerologii. 2013; 89 (6): 32–9 (in Russian)]
  31. Swindell W.R., Johnston A., Voorhees J.J., Elder J.T., Gudjonsson J.E. Dissecting the psoriasis transcriptome: inflammatory- and cytokine-driven gene expression in lesions from 163 patients. BMC Genomics. 2013; 14: 527. https://doi.org/10.1186/1471-2164-14-527
  32. Swindell W.R., Johnston A., Xing X., Voorhees J.J., Elder J.T., Gudjonsson J.E. Modulation of epidermal transcription circuits in psoriasis: new links between inflammation and hyperproliferation. PLoS One. 2013; 8 (11): e79253. https://doi.org/10.1371/journal.pone.0079253
  33. Zeng X., Zhao J., Wu X., Shi H., Liu W., Cui B., Yang L., Ding X., Song P. PageRank analysis reveals topologically expressed genes correspond to psoriasis and their functions are associated with apoptosis resistance. Mol. Med. Rep. 2016; 13 (5): 3969–76. https://doi.org/10.3892/mmr.2016.4999
  34. Lambert S., Hambro C.A., Johnston A., Stuart P.E., Tsoi L.C., Nair R.P., Elder J.T. Neutrophil extracellular traps induce human Th17 cells: effect of psoriasis-associated TRAF3IP2 genotype. J. Invest. Dermatol. 2019; 139 (6): 1245–53. https://doi.org/10.1016/j.jid.2018.11.021
  35. Martel B.C., Litman T., Hald A., Norsgaard H., Lovato P., Dyring-Andersen B., Skov L., Thestrup-Pedersen K., Skov S, Skak K., Poulsen L.K. Distinct molecular signatures of mild extrinsic and intrinsic atopic dermatitis. Exp. Dermatol. 2016; 25 (6): 453–9. https://doi.org/10.1111/exd.12967
  36. Brown S.J. Molecular mechanisms in atopic eczema: insights gained from genetic studies. J. Pathol. 2017; 241 (2): 140–5. https://doi.org/10.1002/path.4810
  37. Tham E.H., Dyjack N., Kim B.E., Rios C., Seibold M.A., Leung D.Y.M., Goleva E. Expression and function of the ectopic olfactory receptor OR10G7 in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2019; 143 (5): 1838–1848. e4. https://doi.org/10.1016/j.jaci.2018.11.004
  38. Meng J., Moriyama M., Feld M., Buddenkotte J., Buhl T., Szöllösi A., Zhang J., Miller P., Ghetti A., Fischer M., Reeh P.W., Shan C., Wang J., Steinhoff M. New mechanism underlying IL-31-induced atopic dermatitis. J. Allergy Clin. Immunol. 2018; 141 (5): 1677–89. e8. https://doi.org/10.1016/j.jaci.2017.12.1002