Mitochondrial proteins as biomarkers of occupational disease risk of pilots and astronauts

DOI: https://doi.org/10.29296/24999490-2024-01-06

D.O. Leontieva(1, 2), A.S. Zubareva(2), A.E. Korovin(1, 3), A.P. Grishin4, D.V. Tovpeko(1, 3), T.V. Fedotkina(1, 5), L.P. Churilov(1, 2)
1-Saint-Petersburg State University, Universitetskaya nab. 7–9, St. Petersburg, 199034, Russian Federation;
2-St.Petersburg Research Institute of Phthisiopulmonology, Ministry of Health of the Russian Federation,
Ligovsky pr. 2–4, St. Petersburg, 191036, Russian Federation;
3-Kirov Military Medical Academy, Akademician Lebedeva str, 6, St. Petersburg, 194044, Russian Federation;
4-Research Institute of the Yuri Gagarin Space Center, Zvezdny Gorodok, Moscow Region, 141160, Russian Federation;
5-Almazov National Medical Research Center, Akkuratova str. 2, St. Petersburg, 197341, Russian Federation

Introduction. Mitochondrial dysfunction is an important pathogenic mechanism of neurodegeneration, characterized by a progressive structural and functional loss of neurons, leading to heterogeneous clinical and pathological manifestations with subsequent impairment of the functional anatomy of the brain. Aim of research. To study the influence of occupational hazards and stress experienced by civil aviation pilots and cosmonauts on the expression of mitochondrial biomarkers in buccal epithelial cells to assess the risk of developing neurodegenerative processes. Material and methods. The study involved 23 male participants in two age groups. 4 groups of investgation were formed, according to the occupation, comparable in age. The expression of mitochondrial proteins prohibitin and parkin in the buccal epithelium of the study participants was assessed by immunohistochemical methods. Results. A decrease in the expression level of the prohibitin protein was found in the group of civil aviation pilots compared to the control group of the corresponding age. There was also a tendency to a decrease in the level of expression of the studied proteins prohibitin and parkin in the group of cosmonauts compared with the control group of the corresponding age. Conclusion. The results obtained indicate a mitochondrial dysfunction, which may increase the risk of developing neurodegenerative changes.
Keywords: 
mitochondria, mitochondrial proteins, neurodegenerative processes, buccal epithelium, aviation and space medicine, occupational diseases

Список литературы: 
  1. Poddar K.M., Chakraborty A., Banerjee S. Neurodegeneration: diagnosis, prevention, and therapy. Oxidoreductase. 2021. DOI:10.5772/intechopen.94950
  2. Сухоруков В.С., Воронкова А.С., Литвинова Н.А., Баранич Т.И., Иллариошкин С.Н. Роль индивидуальных особенностей митохондриальной ДНК в патогенезе болезни Паркинсона. Генетика. 2020; 56 (4): 392–400. DOI: 10.31857/S0016675820040141.
  3. [Sukhorukov V.S., Voronkova A.S., Litvinova N.A., Baranich T.I., Illarioshkin S.N. The role of mitochondrial dna individuality in the pathogenesis of Parkinson’s disease Genetika. 2020; 56 (4): 392–400. DOI:10.31857/S0016675820040141 (in Russian)]
  4. Wilson D.M. 3rd, Cookson M.R., Van Den Bosch L., Zetterberg H., Holtzman D.M., Dewachter I. Hallmarks of neurodegenerative diseases. Cell. 2023; 186 (4): 693–714. DOI:10.1016/j.cell.2022.12.032
  5. World Health Organization. Global status report on the public health response to dementia. World Health Organization. 2021. Available at: https://apps.who.int/iris/handle/10665/344701
  6. Jellinger K.A. Basic mechanisms of neurodegeneration: a critical update. J. Cell. Mol. Med. 2010; 14 (3): 457–87. DOI:10.1111/j.1582-4934.2010.01010.x
  7. Brown R.C., Lockwood A.H., Sonawane B.R. Neurodegenerative diseases: an overview of environmental risk factors. Environ. Health Perspect. 2005; 113 (9): 1250–6. DOI:10.1289/ehp.7567
  8. Cheng Y.W., Chiu M.J., Chen Y.F., Cheng T.W., Lai Y.M., Chen T.F. The contribution of vascular risk factors in neurodegenerative disorders: from mild cognitive impairment to Alzheimer’s disease. Alzheimers Res Ther. 2020; 12 (1): 91. DOI:10.1186/s13195-020-00658-7
  9. Armstrong R. What causes neurodegenerative disease? Folia Neuropathol. 2020; 58 (2): 93–112. DOI:10.5114/fn.2020.96707
  10. Liu C., Liu Z., Zhang Z., Li Y., Fang R., Li F., Zhang J. A Scientometric analysis and visualization of research on Parkinson’s disease associated with pesticide exposure. Front. Public Health. 2020; 8: 91. DOI:10.3389/fpubh.2020.00091
  11. Hou Y., Dan X., Babbar M., Wei Y., Hasselbalch S.G., Croteau D.L., Bohr V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019; 15 (10): 565–81. DOI:10.1038/s41582-019-0244-7
  12. Wilson D., Driller M., Johnston B., Gill N. The prevalence and distribution of health risk factors in airline pilots: a cross-sectional comparison with the general population. Aust. N. Z. J. Public Health. 2022; 46 (5): 572–80. DOI:10.1111/1753-6405.13231
  13. Blettner M., Grosche B., Zeeb H. Occupational cancer risk in pilots and flight attendants: current epidemiological knowledge. Radiat. Environ. Biophys. 1998; 37 (2): 75–80. DOI:10.1007/s004110050097
  14. Chorley A.C., Evans B.J., Benwell M.J. Civilian pilot exposure to ultraviolet and blue light and pilot use of sunglasses. Aviat. Space Environ. Med. 2011; 82 (9): 895–900. DOI:10.3357/asem.3034.2011
  15. Ott C., Huber S. Die klinische Bedeutung von kosmischer Strahlenbelastung in der Luftfahrt. Praxis (Bern 1994). 2006; 95 (4): 99–106. DOI:10.1024/0369-8394.95.4.99
  16. [Ott C., Huber S. The clinical significance of cosmic radiation in aviation. Praxis (Bern 1994). 2006; 95 (4): 99–106. DOI:10.1024/0369-8394.95.4.99 (in German)]
  17. Декалин А.А. Профессиональные и профессионально обусловленные заболевания летного состава гражданской авиации. Синергия Наук. 2019; 31: 1461–76
  18. [Dekalin А.А. Occupational and occupationally caused diseases of aircraft of civil aviation. Sinergia Nauk. 2019; 31: 1461–76 (in Russian)]
  19. Laranjeiro R., Harinath G., Pollard A.K., Gaffney C.J., Deane C.S., Vanapalli S.A., Etheridge T., Szewczyk N.J., Driscoll M. Spaceflight affects neuronal morphology and alters transcellular degradation of neuronal debris in adult Caenorhabditis elegans. iScience. 2021; 24 (2): 102105. DOI:10.1016/j.isci.2021.102105
  20. Tesei D., Jewczynko A., Lynch A.M., Urbaniak C. Understanding the complexities and changes of the astronaut microbiome for successful long-duration space missions. Life (Basel). 2022; 12 (4): 495. DOI:10.3390/life12040495
  21. Afshinnekoo E., Scott R.T., MacKay M.J., Pariset E., Cekanaviciute E., Barker R., Gilroy S., Hassane D., Smith S.M., Zwart S.R., Nelman-Gonzalez M., Crucian B.E., Ponomarev S.A., Orlov O.I., Shiba D., Muratani M., Yamamoto M., Richards S.E., Vaishampayan P.A., Meydan C., Foox J., Myrrhe J., Istasse E., Singh N., Venkateswaran K., Keune J.A., Ray H.E., Basner M., Miller J., Vitaterna M.H., Taylor D.M., Wallace D., Rubins K., Bailey S.M., Grabham P., Costes S.V., Mason C.E., Beheshti A. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell. 2020; 183 (5): 1162–84. DOI:10.1016/j.cell.2020.10.050
  22. Akiyama T., Horie K., Hinoi E., Hiraiwa M., Kato A., Maekawa Y., Takahashi A., Furukawa S. How does spaceflight affect the acquired immune system? NPJ microgravity. 2020; 6: 14. DOI:10.1038/s41526-020-0104-1
  23. Самойлов А.С., Ушаков И.Б., Шуршаков В.А. Радиационное воздействие в орбитальных и межпланетных космических полетах: мониторинг и защита. Экология человека. 2019; 26 (1): 4–9. DOI:10.33396/1728-0869-2019-1-4-9
  24. [Samoylov A.S., Ushakov I.B., Shurshakov V.A. Radiation exposure during the orbital and interplanetary spaceflights: monitoring and protection. Ekologiya cheloveka (Human Ecology). 2019; 26 (1): 4–9. DOI:10.33396/1728-0869-2019-1-4-9 (in Russian)]
  25. Meshkov D., Rykova M., Antropova E., Vdovin A., Biziukin A., Nesvizhsky I. Phagocyte system under spaceflight conditions. J. Gravit. Physiol. 1998; 5 (1): 139–40.
  26. Shirah B.H., Ibrahim B.M., Aladdin Y., Sen J. Space neuroscience: current understanding and future research. Neurol. Sci. 2022; 43 (8): 4649–54. DOI:10.1007/s10072-022-06146-0
  27. Пальцев М.А., Кветной И.М., Зуев В.А., Линькова Н.С., Кветная Т.В. Нейродегенеративные заболевания: молекулярные основы патогенеза, прижизненной персонифицированной диагностики и таргетной фармакотерапии. СПб.: ООО «Эко-Вектор», 2019; 200
  28. [Pal’cev M.A., Kvetnoj I.M., Zuev V.A., Lin’kova N.S., Kvetnaya T.V. Neurodegenerative diseases: molecular basis of pathogenesis, lifelong personalized diagnostics and targeted pharmacotherapy. Saint-Petersburg: Eko-Vektor LLC Publisher, 2019; 200 (in Russian)]
  29. Johri A., Beal M.F. Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 2012; 342 (3): 619–30. DOI: 10.1124/jpet.112.192138
  30. Keogh M.J., Chinnery P.F. Mitochondrial DNA mutations in neurodegeneration. Biochim. Biophys. Acta. 2015; 1847 (11): 1401–11. DOI: 10.1016/j.bbabio.2015.05.015.
  31. Dawson T.M., Dawson V.L. Parkin plays a role in sporadic Parkinson’s disease. Neurodegener. Dis. 2014; 13 (2-3): 69–71. DOI:10.1159/000354307
  32. Hebron M., Chen W., Miessau M.J., Lonskaya I., Moussa C.E. Parkin reverses TDP-43-induced cell death and failure of amino acid homeostasis. J. Neurochem. 2014; 129 (2): 350–61. DOI:10.1111/jnc.12630
  33. Rosen K.M., Moussa C.E., Lee H.K., Kumar P., Kitada T., Qin G., Fu Q., Querfurth H.W. Parkin reverses intracellular β-amyloid accumulation and its negative effects on proteasome function. J. Neurosci. Res. 2010; 88 (1): 167–78. DOI:10.1002/jnr.22178
  34. Tsai Y.C., Fishman P.S., Thakor N.V., Oyler G.A. Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J. Biol. Chem. 2003; 278 (24): 22044–55. DOI:10.1074/jbc.M212235200
  35. Kubo S., Hatano T., Takanashi M., Hattori N. Can parkin be a target for future treatment of Parkinson’s disease? Expert Opin. Ther. Targets. 2013; 17 (10): 1133–44. DOI:10.1517/14728222.2013.827173
  36. Signorile A., Sgaramella G., Bellomo F., De Rasmo D. Prohibitins: a critical role in mitochondrial functions and implication in diseases. Cells. 2019; 8 (1): 71. DOI:10.3390/cells8010071.
  37. Tatsuta T., Model K., Langer T. Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol. Biol. Cell. 2005; 16 (1): 248–59. DOI:10.1091/mbc.e04-09-0807
  38. Merkwirth C., Dargazanli S., Tatsuta T., Geimer S., Löwer B., Wunderlich F.T., von Kleist-Retzow J.C., Waisman A., Westermann B., Langer T. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev. 2008; 22 (4): 476–88. DOI:10.1101/gad.460708.
  39. Эллиниди В.Н., Аникеева Н.В., Максимова Н.А. Практическая иммуногистоцитохимия: методические рекомендации. СПб.: ВЦЭРМ МЧС России; 2002; 36
  40. [Ellinidi V.N., Anikeeva N.V., Maksimova N.A. Prakticheskaya immunogistocitohimiya: metodicheskie rekomendacii. Saint Petersburg: VCERM MCHS Rossii Publisher; 2002; 36 (in Russian)]
  41. Wang X., Ding D., Wu L., Jiang T., Wu C., Ge Y., Guo X.. PHB blocks endoplasmic reticulum stress and apoptosis induced by MPTP/MPP(+) in PD models. J. Chem. Neuroanat. 2021; 113: 101922. DOI: 10.1016/j.jchemneu.2021. 101922
  42. Williams D.R. The biomedical challenges of space flight. Annu. Rev. Med. 2003; 54: 245–56. DOI: 10.1146/annurev.med.54.101601.152215