EVALUATION OF THE EFFECT OF NEUROPEPTIDES OF THE MELANOCORTIN FAMILY ON STRESS-ASSOCIATED CHANGES IN THE LEVEL OF CORTICOTROPIN-RELEASING HORMONE AND CORTICOSTERONE

DOI: https://doi.org/10.29296/24999490-2024-01-08

A.L. Yasenyavskaya
Astrakhan State Medical University, Bakinskaya str., 121, Astrakhan, 414000, Russian Federation

Introduction. To date, the problem of studying the neuropeptide system of regulation of adaptive processes is relevant, since the stress reaction is a trigger for the occurrence of various diseases, in particular depression. Corticoliberin is considered as the main regulator of the hypothalamic-pituitary-adrenal axis, released in response to stress from the paraventricular nucleus of the hypothalamus, modulating the synthesis of adrenal hormones and further the processes of integration of neuroendocrine, autonomic and behavioral responses to stress. The aim of the study was to evaluate the effect of neuropeptides on stress–induced changes in corticotropin-releasing hormone and corticosterone. Material and methods. The experiment was carried out on male rats in the amount of 70 individuals, which were divided into several groups: a group of intact animals receiving an equiobject of water solution for intraperitoneally injection for 20 days (10 individuals), a group of animals receiving an equiobject of water solution for intraperitoneally injection in an experimentally created model of a depressive-like state for 20 days (20 individuals); experimental groups of animals who received intraperitoneally studied neuropeptide compounds Met-Glu-His-Phe-Pro-Gly-Pro and His-Phe-Arg-Trp-Pro-Gly-Pro at a dose of 100 mcg/kg/day for 20 days from day 1 of an experimentally created model of a depressive-like state. A depressive-like state was modeled by daily intermale confrontations for 20 days, as a result of which submissive and aggressive types of behavior were formed in rats. Neuroendocrine status was assessed by determining the level of key hormones of the hypothalamic-pituitary-adrenal axis (corticotropin-releasing hormone (corticoliberin) and corticosterone) in blood serum using enzyme immunoassay (ELISA). Results. In conditions of stress-induced depression, a statistically significant increase in corticoliberin and corticosteroid in the blood of rats of both types of behavior was found, the difference in comparative aspect with the indicators of the control group, while exposure to neuropeptides against the background of stressful exposure contributed to a decrease in corticosterone levels by an average of 30% (p
Keywords: 
glyproline compounds, neuropeptides, stress-induced depression, corticoliberin, corticosterone

Список литературы: 
  1. Касьянов Е.Д. Функционирование гипоталамо-гипофизарно-надпочечниковой оси при депрессии: актуальное состояние проблемы. Журнал Психическое здоровье. 2017; 8: 27–34.
  2. [Kasyanov E.D. Functioning of the hypothalamic-pituitary-adrenal axis in depression: current state of the problem. Zhurnal Psihicheskoe zdorov'e. 2017; 8: 27–34 (in Russian)]
  3. Faurholt-Jepsen M., Frøkjær V. G., Nasser A., Jørgensen N. R., Kessing L. V., Vinberg M. The relationship between the recreational activity of cortisol and a standardized patient with stress and instability in pagents with bipolar alignment: a search study. Bipolar disorder. 2021; 9: 8. DOI: 10.1186/s40345-020-00214-0
  4. Kubera M., Krieger B., Crow D., Rogozh Z., Roman A., Basta-Kaim A., Budzishevska B., Leskevich M., Antos D., Novak V., Mae with M., Salon V. Stimulating effect of pretreatment with antidepressants on the progression of melanoma B16 F10 in highly active male and female C57BL/6J mice. Int. J. Neuropsychopharmacol. 2006; 9 (3): 297–305. DOI: 10.1016/j.jneuroim.2011.09.006.
  5. Boos G.R.V., de Lacerda R.B., Paz M.M., Hubert, da Cruz Almeida,V. L., Reshia V.K., Oesterreich S.A. Molecular aspects of depression: a review from neuroscience to treatment. European Journal of Pharmacology. 2019; 851: 99–121.
  6. Sartori S.B., Singewald N. New pharmacological targets in the development of drugs for the treatment of anxiety and anxiety disorders. Pharmacology and Therapy. 2019; 204: 107402. DOI: 10.1016/j.ejphar.2019.02.024
  7. Гуляева Н.В. Молекулярные механизмы действия препаратов, содержащих пептиды мозга: кортексин. Журнал неврологии и психиатрии им. С.С. Корсакова. 2018; 118 (10): 93–6.
  8. [Guliaeva NV. Molecular mechanisms of brain peptide-containing drugs: cortexin. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2018; 118 (10): 93–6. DOI: 10.17116/jnevro201811810193 (in Russian)]
  9. Gupta R., Prabhavalkar K. Combination therapy with neuropeptides for the treatment of anxiety disorder. Neuropeptides. 2021; 86: 102127. DOI: 10.1016/j.npep.2021.102127
  10. Yasenyavskaya A.L., Samotrueva M.A., Tsibizova A.A., Bashkina O.A., Myasoedov N., Andreeva L. Effects of neuropeptides on behavior of rats in open field test and experimentally induced social stress. Archiv EuroMedica. 2020; 10 (3): 25–8. DOI 10.35630/2199-885X/2020/10/3.5.
  11. Григорьян Г.А., Дыгало Н.Н., Гехт А.Б., Степаничев М.Ю., Гуляева Н.В. Молекулярно-клеточные механизмы депрессии. Роль глюкокортикоидов, цитокинов, нейротрансмиттеров и трофических факторов в генезе де-прессивных расстройств. Успехи физиологических наук. 2014; 45 (2): 3–19.
  12. [Grigoryan G.A., Dygalo N.N., Geht A.B., Stepanichev M.Yu., Gulyaeva N.V. Molecular and cellular mechanisms of depression. The role of glucocorticoids, cytokines, neurotransmitters and trophic factors in the genesis of depressive disorders. Uspehi fiziologicheskih nauk. 2014; 45 (2): 3–19 (in Russian)]
  13. Cryan J.F., Leonardо B.E. Depression: from psychopathology to pharmacotherapy. Switzerland, Basel : Karger. 2010: 274
  14. Miller A.H., Raison C.L. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immu-nol. 2016; 16 (1): 22–34. DOI: 10.1038/nri.2015.5
  15. Truba R., Barone Lehman S., Desmedt T., Kresan A., Atanasova B., Camus V. Neuroinflammation and depression: review. European J. of Neurology, 2021: 53 (1): 151–71. DOI: 10.1111/ejn.14720
  16. Filippenkov I.B., Stavchansky V.V., Glazova N.Yu., Sebentsova E.A., Remizova Yu.A., Valieva L.V., Dergunova L.V. The anti-stress effect of melanocortin derivatives associated with the correction of gene expression patterns in the hippocampus of male rats after acute stress. International J. of Molecular Sciences. 2021; 22 (18): 10054. DOI: 10.3390/ijms221810054
  17. Markov D.D., Dolotov O.V., Grivennikov I.A. The melanocortin system: a promising target for the development of new antidepressants. International J. of Molecular Sciences. 2023; 24 (7): 6664. DOI: 10.3390/ijms24076664