COMPUTER PREDICTION OF PHARMACOLOGICAL ACTIVITY OF SOLANUM TUBEROSUM L. ALKALOIDS

DOI: https://doi.org/10.29296/24999490-2024-02-09

V.A. Voronov, J.V. Daironas, D.S. Zolotykh
Pyatigorsk Medical and Pharmaceutical Institute a branch of the Volgograd State Medical University,
ave. Kalinina, 11, Pyatigorsk, 357500, Russian Federation

The alkaloids solanine and chaconine were discovered in 1821. However, its did not find medical use due to toxicity. At present, modern research methods have revealed anti-cancer activity of the alcaloids. In this regard, the hypothesis of the presence of other previously unexplored pharmacological effects has arisen. The aim of the study is to predict new possible pharmacological and toxicological effects of alkaloids solanine and chaconine by computer modeling. Material and methods. The Reaxys database was used to identify known types of pharmacologic activity, online services with free access PASS, Swiss Target Prediction, Similarity ensemble approach (SEA) were used to identify new potential activities. They provided a list of potential targets, among which we selected the most promising one. Based on this, we further investigated the interaction of glycoalkaloids with the identified target by molecular docking. Results. The results obtained using the above online services correspond the literature data. However sigma-1 non-opioid intracellular receptor was identified as a new promising target. There is no experimental confirmation of the interaction between the tested compounds for this target. As a result of docking, the binding energy of solanine and chaconine with sigma-1 opioid receptors is comparable to that of the comparison drug, haloperidol. Conclusion. Solanine and chaconine may be active against sigma-1 receptors; however, the docking results need to be confirmed
Keywords: 
solanine, chaconine, alkaloids, computer modeling, Solanum tuberosum

Список литературы: 
  1. α-Solanine [Электронный ресурс] URL: https://www.sigmaaldrich.com/RU/en/product/aldrich/s3757 (дата обращения 01.02.2022).
  2. Wang Y., Wu J., Guo W., Sun Q., Chen X., Zang W., Dong Z., Zhao G. α-Solanine Modulates the Radiosensitivity of Esophageal Cancer Cells by Inducing MicroRNA 138 Expression. Cell Physiol Biochem. 2016; 39 (3): 996–1010. DOI: 10.1159/000447807.
  3. Hassan S.H., Gul S., Zahra H.S., Maryam A., Shakir H.A., Khan M., Irfan M. Alpha Solanine: A Novel Natural Bioactive Molecule with Anticancer Effects in Multiple Human Malignancies. Nutr Cancer. 2021; 73 (9): 1541–52. DOI: 10.1080/01635581.2020.1803932.
  4. PASSOnline [Электронный ресурс] URL: http://www.way2drug.com/passonline (дата обращения 01.04.2022)
  5. Reaxys [Электронный ресурс] URL: https://www.reaxys.com (дата обращения 01.02.2022)
  6. SwissTargetPrediction [Электронный ресурс] URL: http://www.swisstargetprediction.ch (дата обращения 03.04.2022)
  7. Similarity ensemble approach [Электронный ресурс] URL: https://sea.bkslab.org (дата обращения 10.04.2022)
  8. Дружиловский Д.С., Рудик А.В., Филимонов Д.А., Глориозова Т.А., Лагунин А.А., Дмитриев А.В., Погодин П.В., Дубовская В.И., Иванов С.М., Тарасова О.А., Беженцев В.М., Муртазалиева Х.А., Семин М.И., Майоров И.С., Гаур А.С., Састри Г.Н., Поройков В.В., Компьютерная платформа Way2Drug: от прогнозирования биологической активности к репозиционированию лекарств. Известия Академии наук. Серия химическая. 2017; 10: 1832–41. [Druzhilovsky D.S., Rudik A.V., Filimonov D.A., Gloriozova T.A., Lagunin A.A., Dmitriev A.V., Pogodin P.V., Dubovskaya V.I., Ivanov S.M., Tarasova O.A., Refugees V.M., Murtazalieva H.A., Semin M.I., Mayorov I.S., Gaur A.S., Sastri G.N., Poroikov V.V., Way2Drug computer platform: from prediction of biological activity to repositioning of drugs. Izvestiya Akademii Nauk, Seriya Khimicheskaya. 2017; 10: 1832–41 (in Russian)]
  9. Nishie K., Gumbmann M.R., Keyl A.C. Pharmacology of solanine. Toxicol Appl Pharmacol. 1971; 19 (1): 81–92. DOI: 10.1016/0041-008x(71)90192-x.
  10. Gfeller D., Michielin O., Zoete V. Shaping the interaction landscape of bioactive molecules. Bioinformatics. 2013; 29 (23): 3073–9. DOI: 10.1093/bioinformatics/btt540.
  11. Keiser M.J., Roth B.L., Armbruster B.N., Ernsberger P., Irwin J.J., Shoichet B.K. Relating protein pharmacology by ligand chemistry. Nat Biotechnol. 2007; 25 (2): 197–206. DOI: 10.1038/nbt1284.
  12. Trott O., Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput Chem. 2010; 31 (2): 455–61. DOI: 10.1002/jcc.21334.
  13. Schmidt H.R., Betz R.M., Dror R.O., Kruse A.C. Structural basis for σ1 receptor ligand recognition. Nat Struct Mol Biol. 2018; 25 (10): 981–7. DOI: 10.1038/s41594-018-0137-2.
  14. Phillips B.J., Hughes J.A., Phillips J.C., Walters D.G., Anderson D., Tahourdin C.S. A study of the toxic hazard that might be associated with the consumption of green potato tops. Food Chem Toxicol. 1996; 34 (5): 439–48. DOI: 10.1016/0278-6915(96)87354-6.
  15. Park S., Park M.Y., Song G., Lim W. Alpha-solanine inhibits cell proliferation via mitochondrial dysfunction and inhibin synthesis in mouse testis In vitro and In vivo. Chemosphere. 2019; 235: 271–9. DOI: 10.1016/j.chemosphere.2019.06.172.
  16. Patil B.C., Sharma R.P., Salunkhe D.K., Salunkhe K. Evaluation of solanine toxicity. Food Cosmet Toxicol. 1972; 10 (3): 395–8. DOI: 10.1016/s0015-6264(72)80258-x.
  17. Воробьева О.В. Нейрофармакологический потенциал сигма1-рецепторов – новые терапевтические возможности. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2012; 112 (10 2): 51 6. [Vorob’eva O.V. Neuropharmacological potential of sigma1-receptors: new therapeutic possibilities. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2012; 112 (10 2): 51 6 (in Russian)]