MOLECULAR BASES OF THE FEEDING BEHAVIOR CONTROL

DOI: https://doi.org/None

K.A. Matosyan, D.A. Pustovalov, A.N. Oranskaya, A.M. Mkrtumyan, K.G. Gurevich Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Delegatskaya street, 20/1, Moscow, Russian Federation, 127473

Since the middle of the last century, discoveries in the area of molecular biology and physiology somehow led to the revolution in the view of the function and role of the adipocyte in the human body. To date, there have been known and studied more than four adipokines. For the present time their functions are known to be diversified and include the regulation of feeding behavior, carbohydrate metabolism, atherosclerosis, thrombogenesis and so on. Receptors for these molecules are localized as well in peripheral organs, as in organs of the central nervous system (CNS), namely in hypothalamic nuclei. At the level of the central nervous system there is the interaction between adipokines and hormones which regulate feeding behavior. Until recently, only serotonin and neuropeptide Y were referred to them. A similar effect of ghrelin molecules and nesfatin-1 was discovered less than five years ago. The presented review includes the latest data on the structure and function of these molecules, as well as recent data of international surveys about international investigations on their mutual influence.
Keywords: 
adipokines, nesfatin-1, ghrelin, feeding behavior, puberty

Список литературы: 
  1. Zhang Y., Proenca R., Maffei M. and Friedman J.M. Positional cloning of the mouse obese gene and its human gomologue. Nature. 1994; 372: 425–32.
  2. Coleman D.I. Obese and diabetes: two mutant genes causing diabetes – obesity syndromes in mice. Diabetologia. 1978; 14: 141–8.
  3. Cammisotto P.G. and Bukowiecki L.I. Mechanisms of leptin secretion from white adipocytes. Am J Physiol Cell Physiol. 2002; 283 (1): 244–50.
  4. Vaisse S, Halaas J.L., Horvatch C.M. and Friedman J.M. Leptin activation of Stat3 in the hypothalamus of wild ttpe ob/ob mice but not db/db mice. Nat. Genet. 1996; 377: 530–4.
  5. Rohner-Jeanrenaud F. and Cusin I. The loop system between neuropeptid Y and leptin in normal and obese rodents. Hormone mertabolism. 1996; 28: 642–8.
  6. Minokoshi Y., Kim Y.B., Peroni O.D., Fryer L.G., Muller C. and Carling D. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 2002; 415: 339–43.
  7. Susan A. and Loranne A. Leptin enhances glycogen storage in hepatocytes by inhibition of phosphorylase and exerts an additive effect with insulin. Diabetes. 1999; 48 (1): 15–20.
  8. Fehmann H.C., Peiser Bode H.P. and Staam M. Leptin: a potent inhibitor of insulin secretion. Peptides. 1997; 18: 1267–73.
  9. Cioffi J.A., Shafer A.W., Zupancic T.J., Smith-Gbur J., Mikhail A., Platika D. and Snodgrass H.R. Novel B2I9/OB receptor isoforms: possible role of leptin in hematopoiesis and reproduction. Nat Med. 199; 2: 585–9.
  10. Rohrig K., Gottschling-Zeller H., Skurk T., Scriba D., Birgel M. and Hauner H. Effects of leptin on the differentiation and metabolism of human adipocytes. Int J. Obes Relat Metab. Disord. 2001; 25 (10): 1465–70.
  11. Malendowicz L.K., Neri G., Markowska A., Hochol A., Nussdorfer G.G. and Majchrzak M. Effects of leptin and leptin fragments on steroid secretion of freshly dispersed rat adrenocortical cells. J. Steroid. Biochem. Mol. Biol. 2003; 87: 265–8.
  12. Lee Y.J., Park J.H., Ju S.K., You K.H., Ko J.S. and Kim H.M. Leptin receptor isoform expression in rat osteoblasts and their functional analysis. FEBS Lett. 2002; 528: 43–7.
  13. Guan X.M., Hess J.F., Yu H., Hey P.J. and Van der Ploeg L.H.. Differential expression of mRNA for leptin receptor isoforms in the rat brain. Mol Cell Endocrinol. 1997; 133: 1–7.
  14. Honigmann M.R., Nath A.K., Murakami C., Garcia-Cardena G., Papapetropoulos A., Sessa W.C., Madge L.A., Schechner J.S., Schwabb M.B., Polverini P.J. and Flores-Riveros J.R. Biological action of leptin as an angiogenic factor. Science. 1998; 281: 1683–6.
  15. Lilian P.J., Vicente B. and Eduardo F. Peptides and food intake. Front Endocrinol. 2014; 5: 58.
  16. Ryan N.K., Van der Hoek K.H., Robertson S.A. and Norman R.J. Leptin and leptin receptor expression in the rat ovary. Endocrinology. 2003; 144: 5006–13.
  17. Tena-Sempere M., Pinilla L., Zhang F.P., Gonzalez L.C., Huhtaniemi I., Casanueva F.F., Dieguez C. and Aguilar E. Developmental and hormonal regulation of leptin receptor (Ob-R) messenger ribonucleic acid expression in rat testis. Biol Reprod. 2001; 64: 634–43.
  18. Langendonk J.G., Pijl H., Toornvliet A.C., Burggraaf J. and Frölich M. Circadian rhythm of plasma leptin levels in upper and lower body obese women: influence of body fat distribution and weight loss. J Clin Endocrinol Metab. 1998; 83 (5):1706–12.
  19. Saad M.F., Damani S., Gingerich R.L. and Riad-Gabriel M.G. Sexual dimorphism in plasma leptin concentration. J Clin Endocrinol Metab. 1997; 82 (2): 579–84.
  20. Ceddia R.B., William W.N. and Curi R. Comparing effects of leptin and insulin on glucose metabolism in skeletal muscle: evidence for an effect of leptin on glucose uptake and decarboxylation. International Journal of Obesity. 1999; 23 (1): 75–82.
  21. Takahashi-Yasuno A., Masuzaki H., Miyawaki T., Ogawa Y., Matsuoka N., Hayashi, T. Hosoda K., G. Inoue, Y. Yoshimasa, and K. Nakao Leptin receptor polymorphism is associated with serum lipid levels and impairment of cholesterol lowering effect by simvastatin in Japanese men. Diabetes Res Clin Pract. 2003; 62: 169–75.
  22. Marion L., Ken K. and Dunger D.B. Longitudinal study of leptin concentrations during puberty: sex difference and relationship to changes in body composition. The journal of Cinical Endocrinology and Metabolism. 1999; 84 (3): 899–905.
  23. Joskenhövel F., Blum W.F., Vogel E., Englaro P., Müller-Wieland D., Reinwein D., Rascher W., Krone W. Testosterone substitution normalizes elevated serum leptin levels in hypogonadal men. J Clin Endocrinol Metab.1997; 82(8):2510–3.
  24. Maeda K. and Okubo K. DNA cloning and expression of a novel adipose specific collagene like factor, apM1. Biochem Biophys Res Commun. 1996; 221: 286–9.
  25. Scherer P.E., Williams S. Et al. A novel serum protein similar to C1q, prodused exclusively in adipocytes. O Biol Chem. 1995; 27: 25746–26749.
  26. Nakano Y., Tobe T. Isolation and Characterization od GPB28 new gelatin-binding protein purified from human plasma. J Biochem, 1996, 12: 803-812.
  27. Hu E, Liang P. AdipoQ is a novel adipose specific gene dysregulated in obesity. O biol Chem. 1996; 271: 10697-10703.
  28. Pajvani U.B. and Combs T.P. Structure-Function Studies of the Adipocyte-secreted Hormone Acrp30/ Adiponectin. Implications for metabolic regulation and bioactivity. J. Biol. Chem. 2003; 278: 9073–85.
  29. Zhang Z., Henzel W.J. Signal peptide prediction based on analysis of experimentally verified cleavage sites. Protein Sci. 2004; 13: 2819–2824.
  30. Maeda N., Takahashi M., Funahashi T., Kihara S. and Nishizawa H. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001; 50 (9): 2094–9.
  31. Degawa-Yamauchi M., Moss K.A., Bovenkerk J.E. and Shankar S.S. Regulation of adiponectin expression in human adipocytes: effects of adiposity, glucocorticoids, and tumor necrosis factor alpha. Obes Res. 2005;13 (4): 662–9.
  32. Diez J.J. and Iglesias P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol. 2003; 148 (3): 293–300.
  33. Joshi M.B., Philippova M., Ivanov D., Allenspach R., Erne P., Resink T.J. T-cadherin protects endothelial cells from oxidative stress-induced apoptosis. FASEB J. 2005; 19:1737-1739.
  34. Hug C., Wang J., Ahmad N.S., Bogan J. S., Tsao T.S., and Lodish H.F. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc Natl Acad Sci. 2004; 101(28): 10308–10313.
  35. Yamauchi T., Kamon J. and Ito Y. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003; 423: 762–9.
  36. Takeuchi T., Adachi Y., Ohtsuki Y. and Furihata M. Adiponectin receptors, with special focus on the role of the third receptor, T-cadherin, in vascular disease. Med. Mol. Morphol. 2007; 40: 115–20.
  37. Yoon M.J., Lee G.Y., Chung J.J., Ahn Y.H., Hong S.H. and Kim J.B. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes. 2006; 55: 2562–70.
  38. Li Y., Qin G., Liu J., Mao L., Zhang Z., Shang J.Adipose tissue regulates hepatic cholesterol metabolism via adiponectin.Life Sci. 2014; 118(1):27-33.
  39. Yamauchi T., Kamon J., Minokoshi Y., Ito Y., Waki H., Uchida S., Yamashita S., Noda M., Kita S., Ueki K., Eto K., Akanuma Y., Froguel P., Foufelle F., Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T: Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002; 8:1288-1295.
  40. Civitarese A.E., Jenkinson C.P. and Richardson D. Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes. Diabetologia. 2004; 47: 816–20.
  41. Ohashi K., Ouchi N. and Kihara S. Adiponectin I164T mutation is associated with the metabolic syndrome and coronary artery disease. J. Am. Coll. Cardiol. 2004; 43: 1195–200.
  42. Böttner A., Kratzsch J., Müller G. and Kapellen T.M. Gender differences of adiponectin levels develop during the progression of puberty and are related to serum androgen levels. Clin Endocrinol Metab. 2004; 89(8): 4053–61.
  43. Chu L., Riddell M.C., Schneiderman J.E., McCrindle B.W. and Hamilton J.K. The effect of puberty on fat oxidation rates during exercise in overweight and normal-weight girls. J. Appl Physiol. 2014; 116(1):76–82.
  44. Mirza S., Hossain M., Mathews C., Martinez P., Pino P., Jennifer L.G., Rentfro A., McCormick J.B., and Fisher-Hoch S.P. Type 2-Diabetes is Associated With Elevated Levels of TNF-alpha, IL-6 and Adiponectin and Low Levels of Leptin in a Population of Mexican American: A Cross-Sectional Study. Cytokine. 2012; 57(1): 136–142.
  45. Wang H., Chu W.S., Hemphill C. and Elbein S.C. Human resistin gene: molecular scanning and evaluation of association with insulin sensitivity and type 2 diabetes in Caucasians. J. Clin. Endocrinol. Metab. 2002; 87 (6): 2520–4.
  46. Levy J.R., Davenport B., Clore J.N. and Stevens W. Lipid metabolism and resistin gene expression in insulin-resistant Fischer 344 rats. Am. J. Physiol. Endocrinol. Metab. 2002; 282 (3): 626–33.
  47. Nagaev I., Smith U. Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochem Biophys Res Commun. 2001; 285(7): 561–4.
  48. Carswell E.A., Old L.J., Kassel R.L., Green S., Fiore N. and Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. 1975; 72 (9): 3666–70.
  49. MatsuzawaY., Funahashi T. and Nacamura N.T. Molecular mechanism of metabolic syndrome X: contribution of adipocyte-derived bioactive substances. Ann. N-Y Acad. Sci. 1999; 892: 146–54.
  50. Joseph N.A. and Greenberg A.S. Adipocytokines and insulin resistence J. Clin. Endocrinol. Metab. 2004; 89(2): 447–60.
  51. Feng R.N., Chen Z. and Ying L. Meta-Analysis of TNF 308 G/A Polymorphism and Type 2 Diabetes Mellitus. PloS One. 2011; 6(4): e18480.
  52. Fukuhara A., Matsuda M., Nishizawa M., Segawa K., Tanaka M., Kishimoto K., Matsuki Y., Murakami M., Ichisaka T. and Murakami H. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005; 307(5708): 426–30.
  53. Haider D.G., Schaller G., Kapiotis S., Maier C., Luger A. and Wolzt M. The release of the adipocytokine visfatin is regulated by glucose and insulin. Diabetologia. 2006; 49(8): 1909–14.
  54. Brown J.E., Onyango D.J., Ramanjaneya M., Conner A.C., Patel S.T., Dunmore S.J. and Randeva H.S. Visfatin regulates insulin secretion, insulin receptor signalling and mRNA expression of diabetes-related genes in mouse pancreatic beta-cells. J. Mol. Endocrinol. 2010; 44(3):171–8.
  55. Chen M.P., Chung F.M., Chang D.M., Tsai J.C., Huang H.F., Shin S.J. and Lee Y.J. Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2006; 91(1): 295–59.
  56. Bailey S.D., Loredo-Osti J.C., Lepage P., Faith J., Fontaine J., Desbiens K.M., Hudson T.J., Bouchard C., Gaudet D., Perusse L. Common polymorphisms in the promoter of the visfatin gene (PBEF1) influence plasma insulin levels in a French-Canadian population. Diabetes. 2006; 55(10): 2896-2902.
  57. Curat C.A., Wegner V., Sengenès C., Miranville A., Tonus C. and Busse R. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006; 49: 744–7.
  58. Jia S.H., Li Y., Parodo J., Kapus A., Fan L., Rotstein O.D. and Marshall J.C. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest. 2004; 113(9): 1318–27.
  59. Lu L.F., Yang S.S., Wang C.P., Hung W.C., Yu T.H., Chiu C.A., Chung F.M., Shin S.J. and Lee Y.J. Elevated visfatin/pre-B-cell colony-enhancing factor plasma concentration in ischemic stroke. J. Stroke Cerebrovasc Dis. 2009; 18(5): 354–9.
  60. Yan J.J., Tang N.P., Tang J.J., Jia E.Z., Wang M.W., Wang Q.M., Zhu J., Yang Z.J., Wang L.S. and Huang J. Genetic variant in visfatin gene promoter is associated with decreased risk of coronary artery disease in a Chinese population. Clin Chim Acta. 2010;411(1–2): 26–30.
  61. Korner A., Bottcher Y., Enigk B., Kiess W., Stumvoll M. and. Kovacs P. Effects of genetic variation in the visfatin gene (PBEF1) on obesity, glucose metabolism, and blood pressure in children. Metabolism. 2007; 56(6): 772–7.
  62. Dahl T.B., Yndestad A., Skjelland M., Oie E., Dahl A., Michelsen A., Damas J.K., Tunheim S.H., Ueland T. and Smith C. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation. 2007; 115(8): 972–80.
  63. Jaleel A., Aheed B., Jaleel S. and Majeed R. Association of adipokines with obesity in children and adolescents. Biomark Med. 2013; 7(5): 731–5.
  64. Howard A.D., Feighner S.D., Cully D.F., Arena J.P., Liberator P.A., Rosenblum C.I., Hamelin M., Hreniuk D.L., Palyha O.C. and Anderson J. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science. 1996; 273: 974–7.
  65. Cheng K., Chan W.W., Butler B., Barreto A. and Smith R.G. Evidence for a role of protein kinase-C in His-D-Trp-Ala-Trp-D-Phe- Lys-NH2-induced growth hormone release from rat primary pituitary cells. Endocrinology.1991; 129: 3337–42.
  66. Kojima M., Hosoda H., Date Y., Nakazato M., Matsuo H. and Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach Nature. 1999; 402: 656–60.
  67. Chang S.C. and Magee A.I. Acyltransferases for secreted signalling proteins. Molecular Membrane Biology. 2009; 26: 104–13.
  68. Gutierrez J.A., Solenberg P.J., Perkins D.R., Willency J.A., Knierman M.D., Jin Z., Witcher D.R., Luo S., Onyia J.E. and Hale J.E. Ghrelin octanoylation mediated by an orphan lipid transferase. PNAS. 2008; 105: 6320–6325.
  69. Seim I., Herington A.C. and Chopin L.K. New insights into the molecular complexity of the ghrelin gene locus. Cytokine and growth factor. Reviews. 2009; 20: 297–304.
  70. Sato T., Nakamura Y., Shiimura Y., Ohgusu H., Kangawa K. and Kojima M. Structure, regulation and function of ghrelin. J. of Biochem. 2012; 151: 119–28.
  71. Doi K., Hosoda H., Kojima M., Kangawa K. and Nakao K. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J. Clin. Endocrinol. Metab. 2001; 86: 4753–8.
  72. Camina J.P. Cell biology of the ghrelin receptor. J. of Neuroendocrinology. 2006; 18: 65–76.
  73. Olszewski P.K., Grace M.K., Billington C.J. and Levine A.S. Hypothalamic paraventricular injections of ghrelin: effect on feeding and c-Fos immunoreactivity. Peptides. 2003; 24(6): 919–23.
  74. Date Y., Nakazato M., Murakami N., Kojima M., Kangawa K. and Matsukura S. Ghrelin acts in the central nervous system to stimulate gastric acid secretion. Biochem Biophys Res Commun. 2001; 280: 904–7.
  75. Baldanzi G., Filigheddu N., Cutrupi S., Catapano F., Bonissoni S., Fubini A., Malan D., Baj G., Granata R., Broglio F., Papotti M., Surico N., Bussolino F., Isgaard J., Deghenghi R., Sinigaglia F., Prat M., Muccioli G., Ghigo E. and Graziani A. Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol. 2002; 159: 1029–37.
  76. Sun Y., Ahmed S. and Smith R.G. Deletion of ghrelin impairs neither growth nor appetite. Mol. Cell. Biol. 2003; 23: 7973–98.
  77. Wortley K.E., Anderson K., Garcia K., Murray J., Malinova L., Liu R., Moncrieffe M., Thabet K., Cox H., Yancopoulos G.D., Wiegand S.J. and Sleeman M.W. Deletion of ghrelin reveals no effect on food intake, but a primary role in energy balance. Obesity Res. 2004; 12: 170.
  78. Depoortere I., Thijs T., Moechars D., Smet B.D., Donck L.V., Peeters T.L. Effect of peripheral obestatin on food intake and gastric emptying in ghrelin-knockout mice. Br J Pharmacol. 2008; 153(7): 1550–1557.
  79. Oh I.S., Shimizu H., Satoh T., Okada S., Adachi S., Inoue K., Eguchi H., Yamamoto M., Imaki T. and Hashimoto K. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 2006; 443; 709–12.
  80. Miura K., Titani K., Kurosawa Y. and Kanai Y. Molecular cloning of nucleobindin, a novel DNA-binding protein that contains both a signal peptide and a leucine zipper structure. Biochemical and Biophysical Research Communications. 1992; 187: 375–80.
  81. Chen Y.Y., Chan R.M., Tan K.M., Poh L.K., Loke K.Y., Wang J.P., Li H. and Hu Y.H. The association of a nucleobindin 2 gene (NUCB2) variant with childhood adiposity. Gene. 2013; 516(1): 48–52.
  82. Zhang A.Q., Li X.L., Jiang C.Y., Lin L., Shi R.H., Chen J.D. and Oomura Y. Expression of nesfatin-1/NUCB2 in rodent digestive system. World Journal of Gastroenterology. 2010; 16: 1735–41.
  83. Stengel A., Goebel M., Yakubov I., Wang L., Witcher D., Coskun T., Tache Y., Sachs G. and Lambrecht N.W. Identification and characterization of nesfatin-1 immunoreactivity in endocrine cell types of the rat gastric oxyntic mucosa. Endocrinology. 2009; 150: 232–238.
  84. Foo K.S., Brismar H., Broberger C. Distribution and neuropeptide coexistence of nucleobindin-2 mRNA/nesfatin-like immunoreactivity in the rat CNS. Neuroscience. 2008; 156: 563–579.
  85. Brailoiu G.C., Dun S.L., Brailoiu E., Inan S., Yang J., Chang J.K. and Dun N.J. Nesfatin-1: distribution and interaction with a G proteincoupled receptor in the rat brain. Endocrinology. 2007; 148: 5088–94.
  86. Goebel M., Stengel A., Wang L., Lambrecht N.W. and Tache Y., Nesfatin-1 immunoreactivity in rat brain and spinal cord autonomic nuclei. Neuroscience Letters. 2009; 452: 241–246.
  87. Stengel A. and Tache Y. Nesfatin-1 - role as possible new potent regulator of food intake.Regul Pept. 2010; 163 (1-3): 18–23.
  88. Konczol K., Bodnar I., Zelena D., Pinter O., Papp R.S., Palkovits M. and Toth Z.E. Nesfatin-1/NUCB2 may participate in the activation of the hypothalamic-pituitary-adrenal axis in rats. Neurochemistry International. 2010; 57: 189–97.
  89. Shimizu H., Oh I.S., Hashimoto K., Nakata M., Yamamoto S., Yoshida N., Eguchi H., Kato I., Inoue K. and Satoh T. Peripheral administration of nesfatin-1 reduces food intake in mice: the leptinindependent mechanism. Endocrinology. 2009; 150: 662–71.
  90. Garci’a-Galiano D., Navarro V., Roa J., Ruiz-Pino F., Sanchez-Garrido M.A., Pineda R., Castellano J.M., Romero M., Aguilar E. and Gayta F. The anorexigenic neuropeptide, Nesfatin-1, is indispensable for normal puberty onset in the female rat. Journal of Neuroscience. 2010; 30: 7783–92.
  91. Tatemoto K. Neuropeptide Y: History and Overview. In Michel MC. Handbook of Experimental Pharmacology. 2004; 162(4): 2–15.
  92. Allen Y.S., Adrian T.E., Allen J.M., Tatemoto K., Crow T.J., Bloom S.R. and Polak J.M. Neuropeptide Y distribution in the rat brain. Science. 1983; 221(4613): 877–9.
  93. Pedrazzini T., Seydoux J., Aubert J.F., Grouzmann E., Beermann F., Brunner H.R. and Kunstner P. Cardiovascular response, feeding behavior and locomotor activity in mice lacking the NPY Y1 receptor. Nature Med. 1998; 4: 722–6.
  94. Allen Y.S., Adrian T.E., Allen J.M., Tatemoto K., Crow T.J., Bloom S.R., Polak J.M. Neuropeptide Y distribution in the rat brain. Science.1983; 221: 877–9.
  95. Bard J.A., Walker M.W., Branchek T.A. and Weinshank R.L. Cloning and functional expression of a human Y4 subtype receptor for pancreatic polypeptide, neuropeptide Y, and peptide YY. J. Biol. Chem. 1995; 270: 26762–5. 96.