DOI: https://doi.org/None

V.V. Yuzhakov (1), L.E. Sevan'kaeva (1), A.G. Konoplyannikov (1), L.N. Bandurko (1), M.A. Konoplyannikov (2), I.E. Ingel (1), N.K. Fomina (1), M.G. Tsyganova (1), S.Sh. Kal'sina (1) 1 -Medical Radiological Research Center, Koroleva street, 4, Obninsk, Russian Federation, 249036; 2 -Federal Research Clinical Center for specialized types of health care and medical technologies of FMBA, Orekhovy boulevard, 28, Moscow, Russian Federation, 115682

Introduction. The one of the most important problems of the modern regenerative medicine is incomplete understanding of the influence of mesenchymal stem cells (MSCs) on the growth of malignant neoplasms. Aim of the study. Analysis of the allogeneic MSCs’ effects on the growth and functional morphology of transplanted connective tissue tumor in rats. Methods. We administered MSCs grown from the bone marrow cell population of Wistar rats into the tail vein of outbred rats from the experimental group, on the 11th day after the sarcoma M-1 implantation. To study the MSCs distribution and localization in the tumor parenchyma, we labeled MSCs in vitro with bromodeoxyuridine (BrdU). The techniques for studying of the tumor reaction on the systemic MSCs transplantation included immunostaining for PCNA, BrdU and CD31, as well as computerized analysis of the microscopic images. We estimated the MSCs’ effects also through the dynamics of the tumor growth and tumor-bearers’ survival in the experimental and control groups. Results. Early after the transplantation, the labeled MSCs localized in the perivascular areas of angiogenesis on the periphery of tumor nodules. A short-term stimulating effect of MSCs on the sarcoma M-1 growth was due to the increase in the proliferative activity of tumor cells mediated by enhanced peritumoral vascularity. However, after the MSCs transplantation, we observed later an opposite trend, with theintensification of the apoptotic death of tumor cells, which finally resulted in the deceleration of the sarcoma M-1 growth and enhancement of the animals’ survival. Conclusion. The single-shot MSCs administration into the rats with sarcoma M-1 had an oncomodulating effect on the growth of malignant neoplasms and increased the tumor-bearers’ survival.
mesenchymal stem cells, sarcoma М-1, angiogenesis, PCNA, bromodeoxyuridine, CD31

Список литературы: 
  1. Picinich S.C., Mishra P.J., Mishra P.J., Glod J., Banerjee D. The therapeutic potential of mesenchymal stem cells. Cell- & tissue-based therapy. Expert. Opin. Biol. Ther. 2007; 7 (7): 965–73.
  2. Tsyb A.F., Yuzhakov V.V., Roshal’ L.M., Sukhikh G.T., Konoplyannikov A.G., Sushkevich G.N., Yakovleva N.D., Ingel’ I.E., Bandurko L.N., Sevan’kaeva L.E., Mikhina L.N., Fomina N.K., Marei M.V., Semenova Zh.B., Konoplyannikova O.A., Kal’sina S.Sh., Lepekhina L.A., Semenkova I.V., Agaeva E.V., Shevchuk A.S., Pavlova L.N., Tokarev O.Y., Karaseva O.V., Chernyshova T.A. Morphofunctional study of the therapeutic efficacy of human mesenchymal and neural stem cells in rats with diffuse brain injury. Bull. Exp. Biol. Med. 2009; 147 (1): 132–46.
  3. Lazennec G, Jorgensen C. Concise review: adult multipotent stromal cells and cancer: risk or benefit? Stem Cells. 2008; 26(6): 1387-94.
  4. Caplan A.I. Why are MSCs therapeutic? New data: new insight. J. Pathol. 2009; 217 (2): 318–24.
  5. Galderisi U., Giordano A., Paggi M.G. The bad and the good of mesenchymal stem cells in cancer: Boosters of tumor growth and vehicles for targeted delivery of anticancer agents. World J. Stem Cells. 2010; 2 (1): 5–12.
  6. Reagan M.R., Kaplan D.L. Concise Review: Mesenchymal Stem Cell Tumor-Homing: Detection Methods in Disease Model Systems. Stem Cells. 2011; 29 (6): 920–27.
  7. Cuiffo B.G., Karnoub A.E. Mesenchymal stem cells in tumor development. Emerging roles and concepts. Cell Adh. Migr. 2012; 6 (3): 220–30.
  8. Hass R., Otte A. Mesenchymal stem cells as all-round supporters in a normal and neoplastic microenvironment. Cell Commun. Signal. 2012; 10 (1): 26–39.
  9. Ramasamy R., Lam E.W., Soeiro I., Tisato V., Bonnet D., Dazzi F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia. 2007; 21 (2): 304–10.
  10. Yuzhakov V.V., Sevan`kaeva L.E., Ul`yanenko S.E., Yakovleva N.D., Kuznecova M.N., Cyganova M.G., Fomina N.K., Ingel` I.E`., Lychagin A.A. E`ffektivnost` frakcionirovannogo vozdeystviya γ-izlucheniya i bystryh neytronov na sarkomu M-1. Radiac. biol. Radioe`kol. 2013; 53 (3): 267–79. [Iuzhakov V.V., Sevan’kaeva L.E., Ul’ianenko S.E., Iakovleva N.D., Kuznetsova M.N., Tsyganova M.G., Fomina N.K., Ingel’ I.E., Lychagin A.A. The effectiveness of fractionated exposure of sarcoma M-1 to gamma-radiation and fast neutrons. Radiats. Biol. Radioecol. 2013; 53 (3): 267–79 (in Russian)]
  11. Konoplyannikov A.G., Petriev V.M., Konoplyannikova O.A., Kal’sina S.Sh., Lepechina L.A., Smorizanova O.A., Semenkova I.V., Agaeva E.V. Effects of (60)Co whole-body gamma-irradiation in different doses on the distribution of (188)Re-labeled autologous mesenchymal stem cells in wistar rats after intravenous (systemic) transplantation during different periods after exposure. Bull. Exp. Biol Med. 2008; 145 (4): 520–5.
  12. Suzuki K., Sun R., Origuchi M., Kanehira M., Takahata T., Itoh J., Umezawa A., Kijima H., Fukuda S., Saijo Y. Mesenchymal Stromal Cells Promote Tumor Growth through the Enhancement of Neovascularization. Mol. Med. 2011; 17 (7–8): 579–87.
  13. Mishra P.J., Mishra P.J., Glod J.W., Banerjee D. Mesenchymal Stem Cells: Flip Side of the Coin. Cancer Res. 2009; 69 (4): 1255–58.
  14. Spaeth E.L., Dembinski J.L., Sasser A.K., Watson K., Klopp A., Hall B., Andreeff M., Marini F. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE. 2009; 4 (4): e4992.
  15. Coleman R.E., Guise T.A., Lipton A., Roodman G.D., Berenson J.R., Body J.J., Boyce B.F., Calvi L.M., Hadji P., McCloskey E.V., Saad F., Smith M.R., Suva L.J., Taichman R.S., Vessella R.L., Weilbaecher K.N. Advancing treatment for metastatic bone cancer: consensus recommendations from the Second Cambridge Conference. Clin. Cancer Res. 2008; 14 (20): 6387–95.
  16. Roorda B.D., ter Elst A., Kamps W.A., de Bont E.S. Bone marrow-derived cells and tumor growth: Contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells. Crit. Rev. Oncol. Hematol. 2009; 69 (3): 187–98.
  17. Yu J.M., Jun E.S., Bae Y.C., Jung J.S. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells. 2008; 17 (3): 463–73.
  18. Khakoo A.Y., Pati S., Anderson S.A., Reid W., Elshal M.F., Rovira I.I., Nguyen A.T., Malide D., Combs C.A., Hall G., Zhang J., Raffeld M., Rogers T.B., Stetler-Stevenson W., Frank J.A., Reitz M., Finkel T. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J. Exp. Med. 2006; 203 (5): 1235–47.
  19. Lu Y.R., Yuan Y., Wang X.J., Wei L.L., Chen Y.N., Cong C., Li S.F., Long D., Tan W.D., Mao Y.Q., Zhang J., Li Y.P., Cheng J.Q. The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol. Ther. 2008; 7 (2): 245–51.
  20. Ganta C., Chiyo D., Ayuzawa R., Rachakatla R., Pyle M., Andrews G., Weiss M., Tamura M., Troyer D. Rat umbilical cord stem cells completely abolish rat mammary carcinomas with no evidence of metastasis or recurrence 100 days post–tumor cell inoculation. Cancer Res. 2009; 69 (5): 1815–20.