IGHT JUNCTION IN THE MAMMARY GLAND EPITHELIUM: POSSIBLE ROLE IN THE DEVELOPMENT OF ITS DYSFUNCTION

DOI: https://doi.org/None

N.M. Kruglova, A.G. Markov Saint Petersburg State University, Universitetskaya nab., 7/9, St. Petersburg, Russian Federation, 199034

Introduction. Tissue barriers are the essential part of the compartmentalization in different organs. Tight junctions play a key role in paracellular transport. The selective permeability of tight junctions depends on expression of the claudin family of tight junction transmembrane proteins. The aim of the study. Here the presence of claudins in mouse mammary gland alveolar epithelium was studied. Methods. Expression and localization of claudins was analyzed with the use of light and electron microscopy, Western blots and confocal laserscanning microscopy. Results. The data of electron microscopy and occludin application as a protein marker showed the presence of well developed tight junctions net localized between alveolar epithelial cells. Claudin-1, -2, -3, -4, -5, -7, -8, -12, -15, -16,-17 and occludin were revealed in mammary gland tissue by Western-blot analysis. In particular, occludin was identified as a protein with the molecular weight of 60-65 kDa; molecular weight of claudin-1, -2, -3, -7, -8, -17 was 22 kDa; claudin-4, -5 and -15 – 24 kDa; claudin-11 and -12 – 26 kDa. Confocal laser-scanning immunofluorescent microscopy showed claudins to be located in tight junctions of alveolar epithelium. However, the distribution of singular claudins in mammary gland tissue is various. Claudin-1, -4, -12 and -16 were supposed to be constitutive components of tight junctions, and oppositely claudin-2, -5, -7, -8, -15 were shown to be the inducible unit of the structure. Conclusions. The functional variety of claudins in tight junctions of mammary gland alveolar epithelium may serve as a molecular basis for the maintaining of alveolar integrity as well as for selective paracellular transport during secretion.
Keywords: 
mammary gland, tight junction proteins, claudins, occludin

Список литературы: 
  1. Tolkunov Yu.A., Markov A.G. Fiziologiya al`veoly molochnoy zhelezy. SPb.: Nauka, 2005. [Tolkunov Y.A., Markov A.G. Physiology of the alveoli in mammary gland, St. Petersburg: Nauka Publishing, 2005 (in Russian)]
  2. Nguyen D.A., Neville M.C. Tight junction regulation in the mammary gland. J. Mammary Gland Biol. Neoplasia. 1998; 3 (3): 233–46.
  3. Markov A.G. Belki plotnyh kontaktov klaudiny: molekulyarnoe zveno paracellyulyarnogo transporta. Ros. fiziol. zhurn. im. I.M. Sechenova. 2013; 99 (2): 23–43. [Markov A.G. Claudins as tight junction proteins: the molecular element of paracellular transport. Ross Fiziol Zh Im I M Sechenova. 2013; 99 (2):175–95 (in Russian)]
  4. Furuse M., Hirase T., Itoh M., Nagafuchi A., Yonemura S., Tsukita S., Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J. Cell Biol. 1993; 123 (6): 1777–88.
  5. Günzel D., Fromm M. Claudins and other tight junction proteins. Compr. Physiol. 2012; 2: 1819–52.
  6. Stelwagen K. Effect of milking frequency on mammary functioning and shape of lactation curve. J. Dairy Sci. 2001; 84: E204-11.
  7. Brennan K., Offiah G., McSherry E.A., Hopkins A.M. Tight junction: a barrier to the initiation and progression of breast cancer? J. Biomed. Biotechnol. 2010; 2010: 460607.
  8. Hoevel T., Macek R., Mundigl O., Swisshelm K., Kubbies M. Expression and targeting of the tight junction protein CLDN1 in CLDN1-negative human breast tumor cells. J. Cell Physiol. 2002; 191: 60–8.
  9. Morohashi S., Kusumi T., Sato F., Odagiri H., Chiba H., Yoshihara S., Hakamada K., Sasaki M., Kijima H. Decreased expression of claudin-1 correlates with recurrence status in breast cancer. Int. J. Mol. Med. 2007; 20: 139–143.
  10. Osanai M., Murata M., Chiba H., Kojima T., Sawada N. Epigenetic silencing of claudin-6 promotes anchorage-independent growth of breast carcinoma cells. Cancer Sci. 2007; 98: 1557–62.
  11. Kominsky S.L., Argani P., Korz D., Evron E., Raman V., Garrett E., Rein A., Sauter G., Kallioniemi O.P., Sukumar S. Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene. 2003; 22: 2021–33.
  12. Sauer T., Pedersen M.K., Ebeltoft K., Naess O. Reduced expression of Claudin-7 in fine needle aspirates from breast carcinomas correlate with grading and metastatic disease. Cytopathology. 2005; 16: 193–8.
  13. Kominsky S.L., Vali M., Korz D., Gabig T.G., Weitzman S.A., Argani P., Sukumar S. Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4. Am. J. Pathol. 2004; 164: 1627–33.
  14. Reiter B., Kraft R., Günzel D., Zeissig S., Schulzke J.D, Fromm M., Harteneck C. TRPV4-mediated regulation of epithelial permeability. FASEB J. 2006; 20: 1802–12.
  15. Markov A.G., Shadrin L.V., Veshnyakova A.Yu., Amashe S., Fromm M. E`kspressiya klaudina-2 i -16 v plotnyh kontaktah sekretornogo e`piteliya molochnoy zhelezy myshey. Ros. fiziol. zhurn. im. I.M. Sechenova. 2006; 92 (11): 1382–86. [Markov A.G., Shadrin L.V., Veshnyakova A.U., Amasheh S., Fromm M. The tight junction proteins claudin-2 and -16 expression in mammary epithelium in mice. Ross Fiziol Zh Im I M Sechenova. 2006; 92 (11): 1382–86 (in Russian)]
  16. Blackman B., Russell T., Nordeen K.S., Medina D., Neville M.C. Claudin-7 expression and localization in the normal murine mammary gland and murine mammary tumors. Breast Cancer Res. 2005; 7: 248–55.
  17. Blanchard A.A., Watson P.H., Shiu R.P., Leygue E., Nistor A., Wong P., Myal Y. Differential expression of claudin 1, 3, and 4 during normal mammary gland development in the mouse. DNA Cell Biol. 2006; 25: 79–86.
  18. Inai T., Kobayashi J., Shibata Y. Claudin-1 contributes to the epithelial barrier function in MDCK cells. Eur. J. Cell Biol. 1999; 78: 849–55.
  19. Milatz S., Krug S. M., Rosenthal R., Günzel D., Müller D., Schulzke J. D., Amasheh S., Fromm M. Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim. Biophys. Acta Biomembr. 2010; 1798: 2048–57.
  20. Amasheh S., Meiri N., Gitter A.H., Schöneberg T., Mankertz J., Schulzke J.D., Fromm M. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J. Cell Sci. 2002; 115: 4969–76.
  21. Rosenthal R., Milatz S., Krug S.M., Oelrich B., Schulzke J.D., Amasheh S., Günzel D., Fromm M. The tight junction protein claudin-2 forms a paracellular water channel. J. Cell Sci. 2010; 123: 1913–21.
  22. Krug S.M., Günzel D., Conrad M.P., Rosenthal R., Fromm A., Amasheh S., Schulzke J.D., Fromm M. Claudin-17 forms tight junction channels with distinct anion selectivity. Cell Mol. Life Sci. 2012; 69 (16): 2765–78.
  23. Simon D. B., Lu Y., Choate K.A., Velazquez H., Al Sabban E., Praga M., Casari G., Bettinelli A., Colussi G., Rodriguez-Soriano J., McCredie D., Milford D., Sanjad S., Lifton R.P. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999; 285: 103–6.
  24. Neville M.C. Calcium secretion into milk. J. Mammary Gland Biol. Neoplasia. 2005; 10: 119–28.
  25. Tolkunov Y.A., Markov A.G. Integrity of the secretory epithelium of the lactating mouse mammary gland during extended periods after suckling. J. Dairy Research. 1997; 64: 39–45.
  26. Yamamoto Y., Wada T., Kojima T., Yokozaki H., Yamashita T., Kato S., Sawada N., Chiba H. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol. Biol. Cell. 2008; 19: 1912–21.
  27. Stelwagen K., Singh K. The role of tight junction in mammary gland function. J. Mammary Gland Biol. Neoplasia. 2013; 191; 60–8.
  28. Kobayashi K., Oyama S., Numata A., Rahman M.M., Kumura H. Lipopolysaccharide disrupts the milk-blood barrier by modulating claudins in mammary alveolar tight junctions. PLoS One. 2013; 23 (8): e62187.