COMPARATIVE STUDY OF BLOOD SERUM PROTEINS IN PATIENTS WITH SQUAMOUS CELL HEAD AND NECK CANCER

DOI: https://doi.org/None

G.V. Kakurina (1), I.V. Kondakova (1), O.V. Cheremisina (1), D.A. Shishkin (1), E.L. Choinzonov (1,2) 1 -Tomsk Cancer Research Institute, Kooperativny Street, 5, Tomsk, Russian Federation, 634050; 2 -Siberian State Medical University, Moscowski Trakt, 2, Tomsk, Russian Federation, 634050

Introduction. Despite extensive researches, no molecular markers are currently available for predicting progression of squamous cell head and neck carcinoma. The paper presents results of pilot study of proteins in blood serum of healthy volunteers and patients with squamous head and neck cancer (T1-3N1-2M0). The purpose of the study was to analyze blood serum protein spectrum in patients with squamous cell head and neck carcinoma and in healthy subjects using the one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by mass spectrometry. Methods. Blood serum was analyzed by one-dimensional SDS gel electrophoresis by 8–16% gradient polyacrylamide gel followed by Coomassie R-250 staining. Protein bands having differences in intensity of staining were exposed to proteolysis and desalted by C 18 ZipTips microcolumns. The mass-spectrometry analysis was then performed. Statistical analysis was performed using the Statistica 8.0 software. Results. Blood serum protein spectrum of both well known biomarkers of various diseases and minor proteins was found to be changed in patients with squamous cell head and neck carcinoma. Proteins participating in various cell processes, which were observed in blood serum of patients with squamous cell head and neck carcinoma, can be suggested for further study as potential markers of cancer progression. Conclusion. Prospects for the development of diagnostic panel based on the serum protein profiling in patients with squamous cell head and neck carcinoma have been identified. The use of one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis by 8–16% gradient polyacrylamide gel followed by mass spectrometry can be a method of choice for searching for markers and the use of polyacrylamide gradient gelfilled method can improve results of separation of protein mixtures in a sample.
Keywords: 
blood serum, proteins, squamous cell head and neck cancer, markers

Список литературы: 
  1. Choynzonov E.L. Reabilitaciya bol`nyh opuholyami golovy i shei. Tomsk, NTL, 2003. [Chojnzonov E.L. Rehabilitation of patients with head and neck tumors Tomsk, NTL, 2003 (in Russian)]
  2. Kakurina G.V., Kondakova I.V., Choynzonov E.L. Harakteristika proteoma biologicheskih zhidkostey pri ploskokletochnyh karcinomah golovy i shei. Molekulyarnaya medicina. 2013; 2: 33–7. [Kakurina G.V., Kondakova I.V., Choinzonov E.L. Proteomic patterns of biological fluids in patients with head and neck squamous cell carcinoma. Molecular Medicine. 2013; 2: 33–7 (in Russian)]
  3. Spirina L.V., Kondakova I.V., Klisho E.V., Kakurina G.V., Shishkin D.A. Metalloproteinazy kak regulyatory neoangiogeneza v zlokachestvennyh novoobrazovaniyah. Sibirskiy onkologicheskiy zhurnal. 2007; 1: 67–71. [Spirina L. V., Kondakova I.V., Klisho E. V., Kakurina G. V., Shishkin D.A. Metaloproteinases as neoangiogenesis regulators in cancer. Sibirskiy oncologicheskiy zhurnal. 2007; 1: 67–71 (in Russian)]
  4. Klisho E.V., Savenkova O.V., Kondakova I.V., Perel`muter V.M., Choynzonov E.L., Shishkin D.A. Ocenka soderzhaniya metalloproteinaz i ih e`ndogennyh ingibitorov v rake gortani. Voprosy onkologii. 2007; 53 (1): 26–31. [Klisho E.V., Savenkova O.V., Kondakova I.V., Perel’muter V.M., Choĭnzonov E.L., Shishkin D.A. Assay of matrix metalloproteinase levels and their endogenous inhibitors in patients with laryngeal carcinoma. Vopr Onkol. 2007; 53 (1): 26–31(in Russian)]
  5. Shevchenko V.E. Sovremennye mass-spektrometricheskie metody v ranney diagnostike raka. Mass-spektrometriya. 2004; 1 (2): 103–26. [Shevchenko V.E. Modern mass spectrometric methods in early cancer diagnostic. Mass-spektrometrija. 2004; 1 (2): 103–26 (in Russian)]
  6. Greening D.W., Simpson R.J. A centrifugal ultrafiltration strategy for isolating the low molecular weight (less or equal 25K) component of human plasma proteome . J. Proteomics. 2010; 73 (3): 637–48.
  7. Piersma S.R., Fiedler U., Span S., Lingnau A., Pham T.V., Hoffmann S., Kubbutat M.H., Jiménez C.R. Workflow comparison for label free, quantitative secretome proteomics for cancer biomarker discovery: method evaluation, differential analysis, and verification in serum. J. Proteome Res. 2010; 9 (4): 1913–22.
  8. Rabilloud T. Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis. 2009; 30 (1): 174–80.
  9. Rosenfeld J., Capdevielle J., Guillemot J.C., Ferrara P. In gel digestion of proteins for internal sequence analysis after one or two dimensional gel electrophoresis. Anal. Biochem. 1992; 203 (1): 173–9.
  10. Xiao T., Ying W., Li L., Hu Z., Ma Y., Jiao L., Ma J., Cai Y., Lin D., Guo S., Han N., Di X., Li M., Zhang D., Su K., Yuan J., Zheng H., Gao M., He J., Shi S., Li W., Xu N., Zhang H., Liu Y., Zhang K., Gao Y., Qian X., Cheng S. An Approach to Studying Lung Cancer related Proteins in Human Blood . Molecular & Cellular Proteomics. 2005; 4: 1480–86.
  11. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227 (5259): 680–5.
  12. Dowling P., Clarke C., Hennessy K., Torralbo-Lopez B., Ballot J., Crown J., Kiernan I., O’Byrne K.J., Kennedy M.J., Lynch V., Clynes M. Analysis of acute phase proteins, AHSG, C3, CLI, HP and SAA, reveals distinctive expression patterns associated with breast, colorectal and lung cancer. Int J. Cancer. 2012; 131 (4): 911–23.
  13. Farrah T., Deutsch E.W., Omenn G.S., Campbell D.S., Sun Z., Bletz J.A., Mallick P., Katz J.E., Malmström J., Ossola R., Watts J.D., Lin B., Zhang H., Moritz R.L., Aebersold R. A high confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol Cell Proteomics. 2011; 10 (9): M110.006353.
  14. Yu H.K., Ahn J.H., Lee H.J., Lee S.K., Hong S.W., Yoon Y., Kim J.S. Expression of human apolipoprotein(a) kringles in colon cancer cells suppresses angiogenesis dependent tumor growth and peritoneal dissemination. J. Gene Med. 2005; 7: 39–49.
  15. Lillis A.P., Mikhailenko I., Strickland D.K. Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability. J. Thromb Haemost. 2005; 3 (8): 1884–93.
  16. Michlmayr A., Bachleitner-Hofmann T., Baumann S., Marchetti-Deschmann M., Rech-Weichselbraun I., Burghuber C., Pluschnig U., Bartsch R., Graf A., Greil R., Allmaier G., Steger G., Gnant M., Bergmann M., Oehler R. Modulation of plasma complement by the initial dose of epirubicin/docetaxel therapy in breast cancer and its predictive value. Br. J. Cancer. 2010; 103 (8): 1201–8.
  17. Lamour V., Nokin M.J., Henry A., Castronovo V., Bellahcène A. SIBLING proteins: molecular tools for tumor progression and angiogenesis. Med Sci. 2013; 29 (11): 1018–25.
  18. Liu S., Wang H., Wang X., Lu L., Gao N., Rowe P.S., Hu B., Wang Y. MEPE/OF45 protects cells from DNA damage induced killing via stabilizing CHK1. Nucleic Acids Res. 2009; 37 (22): 7447–54.
  19. Sun W., Yu Y., Dotti G., Shen T., Tan X., Savoldo B., Pass A.K., Chu M., Zhang D., Lu X., Fu S., Lin X., Yang J. PPM1A and PPM1B act as IKKbeta phosphatases to terminate TNFalpha induced IKKbeta NF kappaB activation . Cell Signal. 2009; 21 (1): 95–102.
  20. Yamazaki K., Takamura M., Masugi Y., Mori T., Du W., Hibi T., Hiraoka N., Ohta T., Ohki M., Hirohashi S., Sakamoto M. Adenylate cyclase associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility. Lab Invest. 2009; 89 (4): 425–32.