THE ROLE OF MESENCHYMAL STEM CELLS SECRETING CYTOKINES IN THE STIMULATION OF THE REGENERATION PROCESSES IN THE BRAIN

DOI: https://doi.org/None

Ratushnyak M.G., Severin S.E.

The review deals with the analysis of experimental results relating to the protective effect of mesenchymal stem cells (MSCs) after the brain damage. We consider two mechanisms of the MSCs action. The first proposed mechanism is associated with the ability of MSCsto differentiate into cells of the damaged organ and accelerate the regeneration of damage due to the production of new healthy cells. The second mechanism may be associated with the action of regulatory factors that MSCs secrete. The role of cytokines secreted by MSCs in the stimulation of brain repair is reviewed.MSCs stimulate regeneration processes after traumatic brain injury, strokes, in Parkinson's disease and autoimmune diseases of the spinal cord. MSCs have been shown to produce a variety of autocrine/paracrine factors, called “MSC Secretome”, with proand anti-inflammatory activity and other biological activities. The most important regulatory factors secreted by MSCsinclude cytokines IL-4, IL-10, NGF, BDNF, FGF, IGF, VEGF and TNFα, as well as proteins, lipids, and various types of RNA exosomes. Therapeutic effect of these factors is mediated directly by acting on damaged cells or indirectly by stimulating the immune system.
Keywords: 
mesenchymal stem cells (MSC), сonditioned media, exosomes, сytokines, growth factors, secretome

Список литературы: 
  1. Baraniak P.R., McDevitt T.C. Stem cell paracrine actions and tissue regeneration Regen. Med. 2010; 5: 121–43.
  2. Barhum Y., Gai-Castro S., Bahat-Stromza M., Barzilay R., Melamed E., Offen D. Intracerebroventricular transplantation of human mesenchymal stem cells induced to secrete neurotrophic factors attenuates clinical symptoms in a mouse model of multiple sclerosis. J. Mol. Neurosci. 2010; 41: 129–37.
  3. Blurton-Jones M., Kitazawa M., Martinez-Coria H., Castello N.A., Muller F.J., Loring J.F., Yamasaki T.R., Poon W.W., Green K.N., LaFerla F.M. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 13594–9.
  4. Bacigaluppi M., Pluchino S., Peruzzotti-Jametti L., Kilic E., Kilic U., Salani G., Brambilla E., West M.J., Comi G., Martino G., Hermann D.M. Delayed postishaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009; 132: 2239–21.
  5. Drago D., Cossetti C., Iraci N., Gaude E., Musco G., Bachi A., Pluchino S. The stem cell secretome and its role in brain repair. Biochimie, 2013; 95 (12): 2271–85
  6. Shi Y., Su J., Roberts A.I., Shou P., Rabson A.B., Ren G. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 2012; 33: 136–43.
  7. Friedenstein A.J., Deriglasova U.F., Kulagina N.N., Panasuk A.F., Rudakowa S.F., Luria E.A., Rudakow I.A. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp. Hematol. 1974; 2: 83–92.
  8. Lees J.S., Sena E.S., Egan K.J., Antonic A., Koblar S.A., Howells D.W., Macleod M.R. Stem cell-based therapy for experimental stroke: a systematic review and meta-analysis. Int. J. Stroke. 2012; 7: 582–8.
  9. Shi S., Gronthos S.S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res. 2003; 18: 696–704.
  10. Abumaree M.H., Al Jumah M.A., Kalionis B., Jawdat D., Al Khaldi A., AlTalabani A.A., Knawy B.A. Phenotypic and functional characterization of mesenchymal stem cells from chorionic villi of human term placenta. Stem Cell Rev. 2012; 9: 16–31.
  11. Suk-Kee Tae, Seok-Hyn Lee, Jae-Sik Park and Gun-Il Im. Mesenchymal stem cells for tissue engineering and regenerative medicine. Biomed.Mater. 2006; 1: 63–71.
  12. Zhao Lei, Lin Yongda, Ma Jun, Sun Yingyu, Zeng Shaoju, Zhang Xinwen, Zuo Mingxue. Culture and neural differentiation of rat bone marrow mesenchymal stem cells in vitro. Cell Biology International. 2007; 31: 916-923.
  13. Zuk P.A., Zhu M., Ashjian P., De Ugarte D.A., Huang J.I., Mizuno H., Alfonso Z.C., Fraser J.K., Benhaim P., Hedrick M.H. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 2002;13: 4279–95.
  14. Erices A., Conget P., Minguell J.J. Mesenchymal progenitor cells in human umbilical cord blood. Br. J. Haematol. 2000; 109: 235–42.
  15. Salgado A.J., Fraga J.S., Mesquita A.R., Neves N.M., Reis R.L., Sousa N. Role of human umbilical cord mesenchymal progenitors conditioned media in neuronal/glial cell densities, viability, and proliferation. Stem Cells Dev. 2010; 19: 1067–74.
  16. Zhang J., Li Y., Chen J., Cui Y., Lu M., Elias S.B., Mitchell J.B., Hammill L., Vanguri P., Chopp M. Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp. Neurol. 2005; 195: 16–26.
  17. Egashira Y., Sugitani S., Suzuki Y., Mishiro K., Tsuruma K., Shimazawa M., Yoshimura S., Iwama T., Hara H. The conditioned medium of murine and human adipose-derived stem cells exerts neuroprotective effects against experimental stroke model. Brain Res. 2012; 1461: 87–95.
  18. Wei X., Du Z., Zhao L., Feng D., Wei G., He Y., Tan J., Lee W.H., Hampel H., Dodel R., Johnstone B.H., March K.L., Farlow M.R., Du Y. IFATS collection: the conditioned media of adipose stromal cells protect against hypoxiae ischemia-induced brain damage in neonatal rats. Stem Cells. 2009; 27: 478–88.
  19. Constantin G., Marconi S., Rossi B., Angiari S., Calderan L., Anghileri E., Gini B., Bach S.D., Martinello M., Bifari F., Galie M., Turano E., Budui S., Sbarbati A., Krampera M., Bonetti B. Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis. Stem Cells. 2009; 27 (10): 2624–35.
  20. Wang F., Yasuhara T., Shingo T., Kameda M., Tajiri N., Yuan W.J., Kondo A., Kadota T., Baba T., Tayra J.T., Kikuchi Y., Miyoshi Y., Date I. Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: focusing on neuroprotective effects of stromal cell-derived factor-1alpha. BMC Neurosci. 2010; 11: 52.
  21. Galindo L.T., Filippo T.R., Semedo P., Ariza C.B., Moreira C.M., Camara N.O., Porcionatto M.A. (2011). Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury Neurol. Res. Int. 2011; 2011: 564–89.
  22. Venetsanou K., Vlachos K., Moles A., Fragakis G., Fildissis G., Baltopoulos G. Hypolipoproteinemia and hyperinflammatory cytokines in serum of severe and moderate traumatic brain injury (TBI) patients. European Cytokine Network. 2007; 18 (4): 206–9.
  23. McCoy M.K., Martinez T.N., Ruhn K.A., Wrage P.C., Keefer E.W., Botterman B.R., Tansey K.E., Tansey M.G. Autologous transplants of Adipose- Derived Adult Stromal (ADAS) cells afford dopaminergic neuroprotection in a model of Parkinson’s disease. Exp. Neurol. 2008; 210: 14–29.
  24. Yu Bo, Zhang X., Li X., Exosomes Derived from Mesenchymal Stem Cells. Int. J. Mol. Sci. 2014, 15: 4142–57.
  25. Zhang Y., Chopp M., Meng Y., Katakowski M., Xin H., Mahmood A., Xiong Y. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J. Neurosurg. 2015, 16: 1–12.