EXOSOMES FROM VARIOUS BIOLOGICAL FLUIDS: PATTERN AND FUNCTION

DOI: https://doi.org/None

Yunusova N.V., Tamkovich S.N., Kondakova I.V.

Exosomes are microscopic extracellular vesicles with diametr 30–100 nm, which are secreted by different types of cells and may be detected in normal (blood serum, saliva, urine, breast milk) and pathological (ascite) biological fluids. It was shown that exosomes contain a proteins and nucleic acids and participate in cell-to-cell signaling. In this review data concerning exosomal protein, lipidic and nucleic acid contents are systemized and exosomalfunctions in biological fluids are analyzed. It was shown summarized data on immunomodulatory influence of different origin exosomes. The main problemsof exosome investigation of exosomes in human biological fluids such as different approaches for isolation and identification of exosomes, heterogeneityand composite content of exosomes from biological fluids against exosomes from cultivated cell lines are discussed. It was described main functions of exosomes in cancer pathogenesis.
Keywords: 
extracellularvesicles, exosomes, biologicalfluids, cancerpathogenesis

Список литературы: 
  1. Yoon Y.J., Kim O.Y.,Gho Y.S. Extracellular vesicles as emerging intercellular communicasomes. BMBReports. 2014; 47 (10): 531–9.
  2. Principe S., Hui A.B., Bruce J., Sinha A., Liu F.F., Kislinger T. Tumor-derived exosomes and microvesicles in head and neck cancer: implications for tumor biology and biomarker discovery. Proteomics. 2013; 13: 1608–23.
  3. Andreu Z., Yáñez-Mó M. Tetraspanins in extracellular vesicle formation and function. Front Immunol. 2014; 16: 442.
  4. Yunusova N.V., Kondakova I.V., Kolomiec L.A., Molchanov S.V. Proteasomy i e`kzosomy pri rake yaichnikov: svyaz` s osobennostyami klinicheskogo techeniya i prognozom. Sibirskiy onkologicheskiy zhurnal. 2014; 4: 53–9. [Yunusova N.V., Kondakova I.V., Kolomiets L.A., Molchanov S.V. Proteasomes and exosomes in ovarian cancer: relation with disease prognosis and clinical outcome. Sibirskiy oncologicheskiy zhurnal. 2014; 4: 53–9 (in Russian)]
  5. Rupp A.K., Rupp C., Keller S., Brase J.C., Ehehalt R., Fogel M., Moldenhauer G., Marmé F., Sültmann H., Altevogt P. Loss of EpCAM expression in breast cancer derived serum exosomes: role of proteolytic cleavage. Gynecol. Oncol. 2011; 122: 437–46.
  6. Ogawa Y., Miura Y., Harazono A., Kanai-Azuma M., Akimoto Y., Kawakami H., Yamaguchi T., Toda T., Endo T., Tsubuki M., Yanoshita R. Proteomic analysis of two types of exosomes in human whole saliva. Biol. Pharm. Bull. 2011; 34 (1): 13–23.
  7. Marimpietri D., Petretto A., Raffaghello L., Pezzolo A., Gagliani C., Tacchetti C., Mauri P., Melioli G. and Pistoia V. Proteome profiling of neuroblastoma-derived exosomes reveal the expression of proteins potentially involved in tumor progression. PLoS One. 2013; 8 (9): e75054.
  8. Keller S., König A.K., Marmé F., Runz S., Wolterink S., Koensgen D., Mustea A., Sehouli J., Altevogt P. Systemic presence and tumor-growth promoting effect of ovarian carcinoma released exosomes. Cancer Letters. 2009; 278: 73–81.
  9. Runz S., Keller S., Rupp C., Stoeck A., Issa Y., Koensgen D., Mustea A., Sehouli J., Kristiansen G., Altevogt P. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol. Oncol. 2007; 107: 563–71.
  10. Yunusova N.V., Spirina L.V., Kondakova I.V., Kolomiec L.A., Chernyshova A.L., Koval` V.D., Nedosekov V.V., Savenkova O.V. Svyaz` e`kspressii metalloproteinazy PAPP-Ac e`kspressiey rostovyh i transkripcionnyh faktorov pri rake e`ndometriya. Izvestiya RAN. Ser. Biologicheskaya. 2013; 3: 284–91. [Yunusova N.V., Spirina L.V., Kondakova I.V., Kolomiets L.A., Chernyshova A.L., Koval V.D., Nedosekov V.V., Savenkova O.V. The relationship of metalloproteinase PAPP-Aexpression with the expression of growth and transcriptional factors in endometrial cancer. Biology Bulletin. 2013; 3: 284–91 (in Russian)]
  11. Lai R.C., Tan S.S., Teh B.J., Sze S.K., Arslan F., de Kleijn D.P., Choo A., Lim S.K. Proteolytic potential of the MSC exosome proteome: implication for an exosome –mediated delivery of the therapeutic proteasome. Int. J. Proteomics. 2012; 2012. Article ID 971907, 14 pages.
  12. Spirina L.V., Bochkareva N.V., Kondakova I.V., Kolomiec L.A., Shashova E.E., Koval` V.D., Chernyshova A.L., Asadchikova O.N. Regulyaciya insulinopodobnyh faktorov rosta i NF-kBproteasomnoy sistemoy pri rake e`ndometriya. Molekulyarnaya biologiya. 2012; 46 (3): 452–60. [Spirina L.V., Bochkareva N.V., Kondakova I.V., Kolomiets L.A., Shashova E.E., Chernyshova A.L., Koval V.D., Asadchikova O.N. Regulation of insulin-like growth NF-kB proteasome system in endometrial cancer. Molecular Biology. 2012; 46 (3): 452–60 (in Russian)]
  13. Kalinina N.I., Sysoeva V.Yu., Rubina K.A., Parfenova E.V., Tkachuk V.A. Mezenhimal`nye stvolovye kletki v processah rosta i reparacii tkaney. ActaNaturae (russkoyazychnaya versiya). 2011; 4 (11): 30–7. [KalininaN.I., Sisoeva V.Y., Rubina K.A., Parphyonova E.V., Tkachuk V.E. Mesenchimal stem cells in growth and reparation tissues. ActaNaturae. 2011; 4 (11): 30–7 (in Russian)]
  14. Gesierich S., Berezovskiy I., Ryschich E., Zöller M. Systemicinduction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Research. 2006; 66: 7083–94.
  15. Kim C.W., Lee H.M., Lee T.H., Kang C., Kleiman H. Extracellular membrane vesicles from tumor cells promote angiogenesis via sphingomyelin. Cancer Res. 2002; 62: 6312–7.
  16. Beloribi-Djefaflia S., Siret C., Lombardo D. Exosomallipidsinduce human pancreatic tumoral MiaPaCa-2 cells resistance through the CXCR4-SDF-1α signaling axis. Oncoscience. 2015; 2 (1): 15–30.
  17. Grey M., Dunning C.J., Gaspar R., Grey C., Brundin P., Sparr E., Linse S. Acceleration of α-synuclein aggregation by exosomes. J. Biol. Chem. 2015; 290 (5): 2969–82.
  18. Phoonsawat W., Aoki-Yoshida A., Tsuruta T., Sonoyama K. Adiponectin is partially associated with exosomes in mouse serum. Biochem. Biophys. Res. Commun. 2014; 448 (3): 261–6.
  19. Yunusova N.V., Kondakova I.V., Afanas`ev S.G., Shatohina O.V., Kovaleva N.P., Frolova A.E., Kolegova E.S. Adipokiny syvorotki krovi i receptory adipokinov u bol`nyh rakom obodochnoy kishki na fone metabolicheskogo sindroma. Sibirskiy onkologicheskiy zhurnal. 2014; 5: 24–8. [Yunusova N.V., Kondakova I.V., Afanasiev S.G., Shatokhina O.V., Kovalyova N.P., Frolova A.E., Kolegova E.S. Serum adipokines and adipokine receptors in colon cancer patientswith metabolic syndrome. Sibirskiy oncologicheskiy zhurnal. 2014; 5: 24–8 (in Russian)]
  20. Li M., Zeringer E., Barta T., Schageman J., Cheng A., Vlassov A.V. Analysis of the RNA content of the exosomes derived from bloods erum and urine and its potential as biomarkers. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014; 369: 1652.
  21. Eldh M., Ekström K., Valadi H., Sjöstrand M., Olsson B., Jernås M., Lötvall J. Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA. PLoSOne. 2010; 5 (12): e15353.
  22. O’Brien K., Rani S., Corcoran C., Wallace R., Hughes L., Friel A.M., McDonnell S., Crown J., Radomski M.W., O’Driscoll L. Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cell so forig into secondary cells. Eur. J. Cancer. 2013; 49 (8): 1845–59.
  23. Ambros V. The functions of animal microRNAs. Nature. 2004; 431 (7006): 350–5.
  24. Guescini M., Genedani S., Stocchi V., Agnati L.F. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J. Neural. Transm. 2010; 117 (1): 1–4.
  25. Balaj L., Lessard R., Dai L., Cho Y., Pomeroy S.L., Breakefield X.O., Skog J. Tumourmicrovesicles contain retrotransposon elements and amplified oncogene sequences. Nat. Commun. 2011; 2: 180.
  26. Kahlert C., Melo S.A., Protopopov A., Tang J., Seth S., Koch M., Zhang J., Weitz J., Chin L., Futreal A., Kalluri R.. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 2014; 289 (7): 3869–75.
  27. Lötvall J., Hill A.F., Hochberg F., Buzás E.I., Di Vizio D., Gardiner C., Gho Y.S., Kurochkin I.V., Mathivanan S., Quesenberry P., Sahoo S., Tahara H., Wauben M.H., Witwer K.W., Théry C. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell.Vesicles. 2014; 3: 26913.
  28. Lässer C., Alikhani V.S., Ekström K., Eldh M., Paredes P.T., Bossios A., Sjöstrand M., Gabrielsson S., Lötvall J., Valadi H. Humansaliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J. Transl. Med. 2011; 14 (9): 9.
  29. Gámez-Valero A., Lozano-Ramos S.I., Bancu I., Lauzurica-Valdemoros R., Borràs F.E. Urinary extracellular vesicles as source of biomarkers in kidney diseases. FrontImmunol. 2015; 6: 6.
  30. Dimov I., JancovicVelickovic L., Stefanovic V. Urinary exosomes. The Scientific World J. 2009; 9: 1107–18.
  31. Dragovic R.A., Southcombe J.H., Tannetta D.S., Redman C.W.G., Sergeant I.L. Multicolor flow cytometry and nanoparticle tracking analysis of extracellular vesicles in the plasma onf normal pregnant and pre-eclamptic women. BiolReprod. 2013; 89 (6): 151.
  32. Baginska J., Viry E., Paggetti J., Medves S., Berchem G., Moussay E., Janji B. The critical role of the tumor microenvironment in shaping natural killer cell-mediated anti-tumor immunity. Front. Immunol. 2013; 4: 490.
  33. Whiteside T.L. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). BiochemSoc Trans. 2013; 41 (1): 245–51.
  34. Krzewski K., Gil-Krzewska A., Nguyen V., Peruzzi G., Coligan J.E. LAMP1/CD107a is required for efficient perforin delivery to lytic granules and NK-cell cytotoxicity. Blood. 2013; 121 (23): 4672–83.
  35. Feng X., Yan J., Wang Y., Zierath J.R., Nordenskjöld M., Henter J.I., Fadeel B., Zheng C. The proteasome inhibitor bortezomib disrupts tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression and naturalkiller (NK) cell killing of TRAIL receptor-positive multiple myeloma cells. Mol Immunol. 2010; 47 (14): 2388–96.
  36. Millimaggi D., Mari M., D’Ascenzo S. Millimaggi D., Mari M., D’Ascenzo S., Carosa E., Jannini E.A., Zucker S., Carta G., Pavan A., Dolo V. Tumor vesicle-associated CD147 modulates the angiogenic capability of endothelial cells. Neoplasia. 2007; 9: 349–57.
  37. Iero M., Valenti R., Huber V., Filipazzi P., Parmiani G., Fais S., Rivoltini L. Tumour-released exosomes and their implications in cancer immunity. Cell Death and Differentiation. 2008; 15: 80–8.
  38. Spirina L.V., Kondakova I.V., Klisho E.V., Kakurina G.V., Shishkin D.A. Metalloproteinazy kak regulyatory neoangiogeneza v zlokachestvennyh novoobrazovaniyah. Sibirskiy onkologicheskiy zhurnal. 2007; 1: 67–71. [Spirina L.V., Kondakova I.V., Klisho E.V., Kakurina G.V., Shishkin D.A. Metalloproteinases as regulators of neoangiogenesis in tumors. Sibirskiy oncologicheskiy zhurnal. 2007; 1: 67–71 (in Russian)]
  39. Al-Nedawi K., Meehan B., Kerbel R.S., Allison A.C., Rak J. Endothelialexpressionofautocrine VEGF upontheuptakeoftumor-derived microvesicles containing oncogenic EGFR. Proc Natl AcadSci USA. 2009; 106 (10): 3794–9.
  40. Spirina L.V., Kondakova I.V. Migraciya i onkogenez. Rossiyskiyonkologicheskiyzhurnal. 2010; 3: 49–53. [Spirina L.V., Kondakova I.V. Migrationandoncogenesis. Russian J. of Oncology. 2010; 3: 49–53 (in Russian)]
  41. Bochkareva N.V., Kondakova I.V., Kolomiec L.A. Rol` aktinsvyazyvayushhih belkov v kletochnom dvizhenii v norme i pri opuholevom roste. Molekulyarnayamedicina. 2011; 6: 14–8. [Bochkareva N.V., Kondakova I.V., Kolomiets L.A. Role of actin binding proteins in normal and tumor growth. Molecular medicine. 2011; 6: 14–8 (in Russian)]
  42. Pathak R., Dermardirossian C. GEF-H1: orchestrating the interplay between cytoskeleton and vesicle trafficking. Small GTFases. 2013; 4 (3): 174–9.
  43. Hoshino D., Kirkbride K.C., Costello K., Clark E. S., Sinha S., Grega-Larson N., Tyska M.J., Weaver A.M. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. 2013; 5 (5): 1159–68.
  44. Kondakova I.V., Yunusova N.V., Spirina L.V., Kolomiec L.A., Villert A.B. Svyaz` aktivnosti vnutrikletochnyh proteinaz s soderzhaniem lokomotornyh belkov v tkanyah pervichnyh opuholey i metastazah pri rake yaichnikov. Bioorganicheskaya himiya. 2014; 40 (6): 735–42. [Kondakova I.V., Yunusova N.V., Spirina L.V., Kolomiets L.A., Villert A.B. Association between intracellular proteinase activities and the content of locomotor proteins in tissues of primary tumors and metastases of ovarian cancer. Russian J. of Bioorganic Chemistry. 2014; 40 (6): 681–7 (in Russian)]
  45. Kakurina G.V., Kondakova I.V., Choynzonov E.L. Harakteristika proteoma biologicheskih zhidkostey pri ploskokletochnyh karcinomah golovy i shei. Molekulyarnaya medicina. 2013; 2: 33–7. [Kakurina G.V., Kondakova I.V., Choynzonov E.L. Characteristic of proteome of biological fluids of squamous cell carcinoma of head and neck. Molecular Medicine. 2013; 2: 33–7 (in Russian)]
  46. Bryant R.J., Pawlowski T., Catto J.W., Marsden G., Vessella R.L., Rhees B., Kuslich C., Visakorpi T., Hamdy F.C. Changes in circulating microRNA levels associated with prostate cancer. Br. J. Cancer. 2012; 106 (4): 768–74.
  47. Corcoran C., Friel A.M., Duffy M.J., Crown J., O’Driscoll L. Intracellular and extracellular microRNAs in breast cancer. Clin. Chem. 2011; 57 (1): 18–32.
  48. Cuk K., Zucknick M., Madhavan D., Schott S., Golatta M., Heil J., Marmé F., Turchinovich A., Sinn P., Sohn C., Junkermann H, Schneeweiss A, Burwinkel B. Plasma microRNA panel for minimally invasive detection of breast cancer. PLoS One. 2013; 8 (10): e76729.
  49. Ogata-Kawata H., Izumiya M., Kurioka D., Honma Y., Yamada Y., Furuta K., Gunji T., Ohta H., Okamoto H., Sonoda H., Watanabe M., Nakagama H., Yokota J., Kohno T., Tsuchiya N. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One. 2014; 9 (4): e92921.
  50. Qin X., Xu H., Gong W., Deng W. The Tumor Cytosol miRNAs, fluid miRNAs, and exosome miRNAs in lung cancer. Front. Oncol. 2015; 4: 357.