STUDYING OF MOLECULAR MECHANISMS OF RESISTANCE OF CORYNEBACTERIUM DIPHTHERIAE STRAINS TO RIFAMPICIN

DOI: https://doi.org/None

Borisova O.Yu., Chagina I.A., Aleshkin V.A.

Introduction. Penicillins and macrolides are applied for the treatment of both diphtheria carriers, in the comprehensive therapy of separate forms of diphtheria, and patients with invasive diseases caused by nontoxigenic C. diphtheriae. In the 1990s there was shown the high efficiency of rifampicin either. The inefficiency of a treatment can speak about the congenital or acquired disturbance of the resistance of mucosas, dysbiosis of a stomatopharynx and nose, and resistance of strains of C.diphtheriae to antibiotics. Purpose was to estimate an antibiotic susceptibility and molecular mechanisms of the resistance of C.diphtheriae strains to rifampicin. Material and methods. 664 strains of C.diphtheriae isolated in 1987–2014 in various regions of Russia were studied. The determination of an antibiotic susceptibility of C. diphtheriae strains are studied by the disco – diffusive and the E-test method. Results. Molecular mechanisms of the resistance were established be means of the primer – specific PCR. The majority of strains was shown to be sensitive to rifampicin, 0,15% of strains had an intermediate level of the resistance and 4,7% of strains seem to be resistant (41,9% of strains were completely resistant and 58,1% of strains had MIC of 16–32 mkg/ml). The resistance of C.diphtheriae strains was established to be caused by the existence of mutations in rpoB gene. Mutations are revealed in 29 positions out of which in 26 positions of a mutations weren't followed by changes at the amino-acid level. In three positions – 1291, 1307 and 1484 significant mutations followed by changes at the amino-acid level – H431N; S436F or S436Y, P495L or P495Q are revealed to be localized in the 1 cluster of rpoB gene. Conclusion. In the territory of the Russian Federation resistant C.diphtheriae strains to rifampicin circulate in 4.7% cases. The molecular mechanism of the resistance of C.diphtheriae strains caused by mutation changes in three positions of a gene rpoB (1291, 1307 and 1487) have been described for the first time.
Keywords: 
Corynebacterium diphtheria, rifampicin, resistance, mutations

Список литературы: 
  1. Sensi P., Greco A.M., Ballotta R. Rifomycin I. Isolation and properties of rifomycin B and rifomycin complex. Antibiot Annu. 1959; 7: 262–70.
  2. Sensi P., Ballotta R., Greco M. Rifomycin V, Rifomycin O. A new antibiotic of the rifomycin family. Farmaco Sci. 1960; 15: 228–34.
  3. Gardner M.J., Williamson D.H., Wilson R.J.M. A circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mol. Biochem. Parasitol. 1991; 44: 115–23.
  4. Pukrittayakamee S., Viravan C., Charoenlarp P., Yeamput C., Wilson R.J., White N.J. Antimalarial effects of rifampin in Plasmodium vivax malaria. Antimicrob Agents Chemother. 1994; 38: 511–4.
  5. Tupin A., Gualtieri M., Roquet-Baneres F., Morichaud Z., Brodolin K., Leonetti J. Resistance to rifampicin: at the crossroad between ecological, genomic and medical concerns. Inter. J. Antimicrob. Agents. 2010; 35: 519–23.
  6. Severinov K., Soushko M., Goldfarb A., Nikiforov V. Rifampicin region revisited. New rifampicin-resistant and streptolydigin-resistant mutants in the subunit of Escherichia coli RNA polymerase. J. Biol. Chem. 1993; 268: 14820–5.
  7. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M.J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993; 341: 647–50.
  8. Ramaswamy S., Musser J.M. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis. 1998; 79: 3–29.
  9. Heep M., Brandstatter B., Rieger U., Lehn N., Richter E., Rusch-Gerdes S., Niemann S. Frequency of rpoB mutations inside and outside the cluster I region in rifampin-resistant clinical Mycobacterium tuberculosis isolates. J. Clin. Microbiol. 2001; 39: 107–10.
  10. Ishikawa J., Chiba K., Kurita H., Satoh H. Contribution of rpoB2 RNA polymerase subunit gene to rifampin resistance in Nocardia species. Antimicrob Agents Chemother. 2006; 50: 1342–6.
  11. Flåtten I., Morigen K., Morigen S. DnaA protein interacts with RNA polymerase and partially protects it from the effect of rifampicin. Mol. Microbiol. 2009; 71: 1018–30.
  12. Imai T., Watanabe K., Mikami Y., Yazawa K., Ando A., Nagata Y., Morisaki N., Hashimoto Y., Furihata K., Dabbs E.R. Identification and characterization of a new intermediate in the ribosylative inactivation pathway of rifampin by Mycobacterium smegmatis. Microb. Drug Resist. 1999; 5: 259–64.
  13. Mel`nikov V.G., Mazurova I.K., Platonova T.V. Kombarova S.Yu., Feoktistova G.N., Zvonareva S.V., Kuznecova M.V., Borisova O.Yu., Lihanskaya E.I. Mikroflora rotoglotki u difteriynyh bakterionositeley do i posle antibiotikoterapii. Sborn. MNIIE`M im. G.N. Gabrichevskogo «Vakcinoprofilaktike – 200 let». 1997; 32–5. [Mel’nikov V.G., Mazurova I.K., Platonova T.V. Kombarova S.Ju., Feoktistova G.N., Zvonareva S.V., Kuznecova M.V., Borisova O.Ju., Lihanskaja E.I. Mikroflora rotoglotki u difterijnyh bakterionositelej do i posle antibiotikoterapii. Sborn. MNIIJeM im. G.N. Gabrichevskogo «Vakcinoprofilaktike – 200 let». 1997; 32–5 (in Russian)]
  14. Kneen R., Pham N.G., Solomon T., Tran T.N., Nguyen T.T.,Tran B.L., Wain J., Day N.P., Parry C.M., White N.J. Penecillin vs. erythromycin in the treatment of diphtheria. J. Clin. Microbol. 1998; 27: 845–50.
  15. Mina N., Burdz T., Wiebe D., Rai J.S., Rahim T., Shing F., Hoang L., Bernard K. Canadian’s first case of multi-drug resistant C.diphtheriae isolated from a skin abscess. J. Clin. Microbiol. 2011; 49 (11): 4003–5.
  16. Von Hunolstein C., Scopetti F., Efstratiou A., Engler K. Penicillin tolerance amogst non-toxigenic C. diphtheria isolated from cases of pharyngitidis. J. Antibiot. Chemother. 2002; 50: 125–8.
  17. Barraud O., Badell E., Denis F. Guiso N., Ploy M.C. Antimicrobial drug resistance in C.diphtheriae. Emerg. Infect. Dis. 2011; 17 (11): 2078–80.
  18. Coyle M.B., Minshew B.H., Bland J.A, Hsu P.C. Erythromycin and clindamycin resistance in C.diphtheriae from skin lesions. J. Antibiot. Chemother. 1979; 16: 525–7.
  19. Engler K.H., Warner M., George R.C. In vitro sensitivity of C.diphtheriae to antimicrobial agents. Fifth International meeting of the European laboratory working group on diphtheria. 1998; 36.
  20. Fafour E., Badell E., Zasada A., Hotzel H., Tomaso H., Guillot S., Guiso N. Characterization and comparison of invasive C. diphtheriae isolates from France and Poland. J. Clin. Microbiol. 2012; 50 (1): 173–5.
  21. Gladin D.P., Kozlova N.S., Zaitseva T.K., Cherednichenko A.S., Khval’ S.A. Sensitivity of C.diphtheriae isolated in Saint-Petersburg to antibacterial drugs. Antibiot. Khimioter. 1999; 4 (5): 17–21.
  22. Maple P.A., Efstratiou A., Tseneva G., Rikushin Y., Deshevoi S., Jahkola M., Vuopio–Varkila J., George R. In vitro susceptibilities of toxigenic strains of C.diphtheriae isolated in northwestern Russia and surrounding areas to ten antibiotics. J. Antibiot. Chemother. 1994; 34 (6): 1037–40.
  23. McLauhlin J., Bickham S., Wiggins G.L., Larsen S.A., Balows A., Jones W.L. Antibiotic susceptibility patterns of recent isolates of C. diphtheriae. Applied Micribiol. 1971; 21 (5): 844–51.
  24. Patey O., Bimet F., Emond J.P., Estrangin E., Riegel P.H., Halioua B., Dellion S., Kiredjian M. Antibiotic susceptibilities of 38 nontoxigenic strains of C.diphtheriae. J. Antibiot. Chemother. 1995; 36: 1108–10.
  25. Pereira G., Pimenta F., Santos F.R., Damasco P.V., Hirata Júnior R., Mattos-Guaraldi A.L. Antimicrobial resistance among Brazilian C. diphtheriae strains. Mem. Inst. Oswaldo Cruz. 2008; 103 (5): 507–10.