DOI: https://doi.org/None

Gomazkov O.A.

A half century of studying the neurogenesis of the adult brain has produced much evidence for an endogenous conversion of neural stem cells. Yet the idea receives increasing criticism, in addition to the many positive comments. Does neurogenesis proceed at a rate sufficiently high for its functional significance? Are new cells capable of integrating into proper brain regions in order to perform a reparative role? How long do new neurons persist in the integration sites, and how significant is their role in the neuronal circuit structure? An organizing function is hypothesized for endogenous adult brain neurogenesis on the basis of current information. One of the main arguments for the hypothesis is the multiplicity of key physiological processes functionally associated with the involvement of new neurons and glial cells: learning, memory, adaptive behavior, protective stress responses, reproductive function, changes in the state of mind, injuries, ischemic and neurodegenerative disorders, etc. The adjustable reprogramming of neuronal precursors and the reparative role of new cells are analyzed. The organizing role of neurogenesis is considered a justified complex process that is important for the function of the adult brain.
adult neurogenesis, hippocampus, dentate gyrus, neurorepair, adaptive function

Список литературы: 
  1. Colucci-D’Amato L., Bonavita V., di Porzio U. The end of the central dogma of neurobiology: stem cells and neurogenesis in adult CNS. Neurol. Sci. 2006; 27: 266–70.
  2. Yarygin K.N., Yarygin V.N. Neyrogenez v central`noy nervnoy sisteme i perspektivy regenerativnoy nevrologii. Zhurn. nevrol. i psihiatrii im. S.S. Korsakova. 2012; 112 (1): 4–13. [Iarygin K.N., Iarygin V.N. Neurogenesis in the central nervous system and prospects of regenerative neurology. Z. Nevrol. i psikhiatrii imeni S.S. Korsakova. 2012; 1: 4–13 (in Russian)]
  3. Gomazkov O.A. Transformaciya neyral`nyh stvolovyh kletok i reparativnye processy v mozge. Zhurn. nevrol. i psihiatrii im. S.S. Korsakova. 2014; 114 (8): 4–12. [Gomazkov O. A. Transformation of neural stem cells and reparative processes in the brain. Z. nevrol. i psikhiatrii imeni S.S. Korsakova 2014; 114 (8): 4–12 (in Russian)]
  4. Gould E. How widespread is adult neurogenesis in mammals? Nat. Rev. Neurosci. 2007; 8 (6): 481–8.
  5. Sanai N., Tramontin A.D., Quiñones–Hinojosa A., Barbaro N.M., Gupta N., Kunwar S., Lawton M.T., McDermott M.W., Parsa A.T., Manuel–Garcia Verdugo J., Berger M.S., Alvarez–Buylla A. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature. 2004; 427 (6976): 740–4.
  6. Wang C., Liu F., Liu Y.Y., Zhao C.H., You Y., Wang L., Zhang J., Wei B., Ma T., Zhang Q., Zhang Y., Chen R., Song H., Yang Z. Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain. Cell. Res. 2011; 21 (11): 1534–50.
  7. Spalding K.L., Bergmann O., Alkass K., Bernard S., Salehpour M., Huttner H.B., Boström E., Westerlund I., Vial C., Buchholz B.A., Possnert G., Mash D.C., Druid H., Frisén J. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013; 153 (6): 1219–27.
  8. Gage F.H., Temple S. Neural stem cells: generating and regenerating the brain. Neuron. 2013; 80 (3): 588–601.
  9. Deshpande A., Bergami M., Ghanem A., Conzelmann K.K., Lepier A., Götz M., Berninger B. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. PNAS USA. 2013; 110: 1152–61.
  10. Yamaguchi M., Mori K. Critical periods in adult neurogenesis and possible clinical utilization of new neurons. Front. Neurosci. 2014; 8: 177–83.
  11. Karow M., Sánchez R., Schichor C., Masserdotti G., Ortega F., Heinrich C., Gascón S., Khan M.A., Lie D.C., Dellavalle A., Cossu G., Goldbrunner R., Götz M., Berninger B. .Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell. Stem. Cell. 2012; 11: 471–6.
  12. Deng W., Aimone J.B., Gage F.H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci. 2010; 11 (5): 339–50.
  13. Liu A., Jain N., Vyas A., Lim L.W. Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats. Elife. 2015;4. doi: 10.7554/eLife.04803.
  14. Solov`eva O.A., Proshin A.T., Storozheva Z.I., Sherstnev V.V. Stimulyator neyrogeneza Ro 25-6981 oblegchaet povtornoe obuchenie prostranstvennomu navyku u vzroslyh krys. Byulleten` e`ksperimental`noy biologii i mediciny. 2012; 153 (5): 727–31. [Solovyeva O.A., Proshin A.T., Storozheva Z.I., Sherstnev V.V. Neurogenesis stimulator Ro 25-6981 facilated formation of spatial skill in adult rats. Bulletin of Experimental Biology and Medicine. 2012; 153 (5): 727–31 (in Russian)]
  15. Kitamura T., Inokuchi K. Role of adult neurogenesis in hippocampal-cortical memory consolidation. Mol. Brain. 2014; 7: 13. doi: 10.1186/1756-6606-7-13.
  16. Wu M.V., Sahay A., Duman RS., Hen R. Functional Differentiation of Adult-Born Neurons along the Septotemporal Axis of the Dentate Gyrus. Cold. Spring. Harb. Perspect. Biol. 2015; 7: a018978. doi: 10.1101/cshperspect.a018978.
  17. Pan Y.W., Storm D.R., Xia Z. Role of adult neurogenesis in hippocampus-dependent memory, contextual fear extinction and remote contextual memory: new insights from ERK5 MAP kinase. Neurobiol. Learn. Mem. 2013; 105: 81–92.
  18. Wang W., Lu S., Li T., Pan Y.W., Zou J., Abel G.M., Xu L., Storm D.R., Xia Z. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function. J. Neurosci. 2015; 35: 7833–49.
  19. Snyder J.S., Cameron H.A. Could adult hippocampal neurogenesis be relevant for human behavior? Behav. Brain. Res. 2012; 227: 384–90.
  20. Lieberwirth C., Liu Y., Jia X., Wang Z. Social isolation impairs adult neurogenesis in the limbic system and alters behaviors in female prairie voles. Horm. Behav. 2012; 62 (4): 357–66.
  21. Wu M.V., Hen R. Functional dissociation of adult-born neurons along the dorsoventral axis of the dentate gyrus. Hippocampus. 2014; 24: 751–61.
  22. Hsiao Y.H., Hung H.C., Chen S.H., Gean P.W. Social interaction rescues memory deficit in an animal model of Alzheimer’s disease by increasing BDNF-dependent hippocampal neurogenesis. J. Neurosci. 2014; 34 (49): 16207–19.
  23. Smagin D.A., Park J.H., Michurina T.V., Peunova N., Glass Z., Sayed K., Bondar N.P., Kovalenko I.N., Kudryavtseva N.N., Enikolopov G. Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression. Front. Neurosci. 2015; 9: 443. doi: 10.3389/fnins.2015.00443. eCollection 2015.
  24. Peretto P., Schellino R., De Marchis S., Fasolo A. The interplay between reproductive social stimuli and adult olfactory bulb neurogenesis. Neural Plast. 2014; 2014: 497657. doi: 10.1155/2014/497657.
  25. Shingo T., Gregg C., Enwere E., Fujikawa H., Hassam R., Geary C., Cross J.C., Weiss S. Pregnancy stimulated neurogenesis in the adult female forebrain mediated by prolactin. Science. 2003; 299: 117–20.
  26. Lieberwirth C., Wang Z. The social environment and neurogenesis in the adult Mammalian brain. Front Hum Neurosci. 2012; 6: 118. doi: 10.3389/fnhum.2012.00118.
  27. Wu M.V., Shamy J.L., Bedi G., Choi C.W., Wall M.M., Arango V., Boldrini M., Foltin R.W., Hen R. Impact of social status and antidepressant treatment on neurogenesis in the baboon hippocampus. Neuropsychopharmacology. 2014; 39 (8): 1861–71. doi: 10.1038/npp. 2014.33.
  28. Snyder J.S., Soumier A., Brewer M., Pickel J., Cameron H.A. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011; 476 (7361): 458–61. doi: 10.1038/nature10287.
  29. Sun X., Zhang Q.W., Xu M., Guo J.J., Shen S.W., Wang Y.Q., Sun F.Y. New striatal neurons form projections to substantia nigra in adult rat brain after stroke. Neurobiol. Dis. 2012; 45 (1): 601–9. doi: 10.1016/j.nbd.2011.09.018
  30. Wang X., Mao X., Xie L., Sun F., Greenberg D.A., Jin K. Conditional depletion of neurogenesis inhibits long-term recovery after experimental stroke in mice. PLoS. One. 2012; 7 (6): e38932. doi: 10.1371/journal.pone.0038932.
  31. Marti-Fàbregas J., Romaguera-Ros M., Gómez-Pinedo U., Martinez-Ramirez S., Jiménez-Xarrié R Marin E, J-L Marti-Vilalta R., Garcia-Verdugo J.M. Proliferation in the human ipsilateral subventricular zone after ischemic stroke. Neurology. 2010; 74: 357–765.
  32. Bennett L., Yang M., Enikolopov G., Iacovitti L. Circumventricular organs: a novel site of neural stem cells in the adult brain. Mol. Cell. Neurosci. 2009; 41 (3): 337–47.
  33. Sanin V, Heeß C, Kretzschmar H, Schüller U. Recruitment of neural precursor cells from circumventricular organs of patients with cerebral ischaemia. Neuropathol. Appl. Neurobiol. 2013; 39 (5): 510–8.
  34. Yu Y., He J., Zhang Y. Increased hippocampal neurogenesis in the progressive stage of Alzheimer’s disease phenotype in an APP/PS1 double transgenic mouse model. Hippocampus. 2009; 19 (12): 1247–53.
  35. Jin K., Peel A.L., Mao X.O., Xie L., Cottrell B.A., Henshall D.C., Greenberg D.A. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2004; 101 (1): 343–7.
  36. Mu Y., Gage F.H. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol. Neurodegener. 2011; 6: 85. doi: 10.1186/1750-1326-6-85.
  37. Cheyne J.E., Grant L., Butler-Munro C., Foote J.W., Connor B., Montgomery J.M. Synaptic integration of newly generated neurons in rat dissociated hippocampal cultures. Mol. Cell. Neurosci. 2011; 47 (3): 203–14.
  38. Ge S., Yang C.H., Hsu K.S., Ming G.L., Song H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron. 2007; 54 (4): 559–66.
  39. Gomazkov O.A. Neyrogenez kak adaptivnaya funkciya mozga. M.: IKAR, 2013; 135. [Gomazkov O.A. Neurogenesis as adaptive function of the brain. M.: IKAR, 2013; 135 (in Russian)]
  40. Peretto P., Bonfanti L. Adult neurogenesis 20 years later: physiological function vs. brain repair. Front. Neurosci. 2015; 9: 71. doi: 10.3389/fnins.2015.00071. eCollection 2015.
  41. Lazic S.E., Fuss J., Gass P. Quantifying the behavioural relevance of hippocampal neurogenesis. PLoS. One. 2014; 9 (11): e113855. doi:10.1371/journal. pone.0113855.
  42. Turnley A.M., Basrai H.S., Christie K.J. Is integration and survival of newborn neurons the bottleneck for effective neural repair by endogenous neural precursor cells? Front. Neurosci. 2014; 8: 29. doi: 10.3389/fnins.2014.00029.
  43. Enikolopov G., Overstreet-Wadiche L., Ge S. Viral and Transgenic Reporters and Genetic Analysis of Adult Neurogenesis. Cold. Spring. Harb. Perspect. Biol. 2015; 7 (8): a018804. doi: 10.1101/cshperspect.a018804).
  44. Couillard-Despres S., Aigner L. In vivo imaging of adult neurogenesis. Eur. J. Neurosci. 2011; 33: 1037–44.
  45. Ho N.F., Hooker J.M., Sahay A., Holt D.J., Roffman J.L. In vivo imaging of adult human hippocampal neurogenesis: progress, pitfalls and promise. Mol. Psychiatry. 2013; 18 (4): 404–16.
  46. Osman A.M., Porritt M.J., Nilsson M., Kuhn H.G. Long-term stimulation of neural progenitor cell migration after cortical ischemia in mice. Stroke. 2011; 42: 3559–65.
  47. Kokoeva M.V., Yin H., Flier J.S. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science. 2005; 310 (5748): 679–83.
  48. Rojczyk–Gołębiewska E., Pałasz A., Wiaderkiewicz R. Hypothalamic subependymal niche: a novel site of the adult neurogenesis. Cell. Mol. Neurobiol. 2014; 34: 631–42.
  49. Giachino C., Taylor V. Notching up neural stem cell homogeneity in homeostasis and disease. Front Neurosci. 2014; 8: 32. doi:10.3389/fnins.2014.00032.
  50. Hsieh J. Orchestrating transcriptional control of adult neurogenesis. Genes Dev. 2012; 26 (10): 1010–21.
  51. Obernier K., Tong C.K., Alvarez-Buylla A. Restricted nature of adult neural stem cells: re-evaluation of their potential for brain repair. Front Neurosci. 2014; 8: 162. doi: 10.3389/fnins. 2014. 00162.
  52. Krik F. Mysli o mozge. «Mozg». Red. P.V. Simonov. M.: Mir, 1984; 257. [Crick F. Ideas about brain; Brain. Edit. P.V. Simonov M.: Mir, 1984; 257 (in Russian)]
  53. Aimone J.B., Wiles J., Gage F.H. Computational influence of adult neurogenesis on memory encoding. Neuron. 2009; 61 (2): 187–202.
  54. Wabik A., Jones P.H. Switching roles: the functional plasticity of adult tissue stem cells. EMBO. J. 2015; 34 (9): 1164–79.
  55. Kokaia Z., Martino G., Schwartz M., Lindvall O. Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat. Neurosci. 2012; 15: 1078–87.
  56. Benner E.J., Luciano D., Jo R., Abdi K., Paez-Gonzalez P., Sheng H., Warner D.S., Liu C., Eroglu C., Kuo C.T. Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4. Nature. 2013; 497: 369–73.
  57. Butti E., Bacigaluppi M., Rossi S., Cambiaghi M., Bari M., Cebrian Silla A., Brambilla E., Musella A., De Ceglia R.,Teneud L., De Chiara V., D’Adamo P., Garcia-Verdugo J.M., Comi G., Muzio L., Quattrini A., Leocani L., Maccarrone M., Centonze D., Martino G. Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity. Brain. 2012; 135 (11): 3320–35.