THE INFLUENCE OF NANOPARTICLES ON BIOLOGICAL INTEGRITY OF HUMAN PLATELETS

DOI: https://doi.org/None

Makarov M.S.

The review presents data concerning the interaction of basic types of nanoparticles with human platelets in vitro and in vivo and biological results of this influence. The initial structure of nanoparticles and their biologically active cargo can both stimulate injury of platelets. Many types of nanoparticles, such as silicates (SiO2), nanogold, quantum dots (CdSe и CdTe), carbon nanotubes, big positive-charged poly-amid-amino-dendrimers induce different ways of the spontaneous activation of platelets in vitro и in vivo. Nano-sized platelet-mimetic liposomes could be used as the non-canonic hemostasis co-factor. The presence of stable positive-charged core enhances aggregative abilities of nanoparticles, moreover, nanoparticle-induced activation of platelet is mainly followed by the membrane influx. The organic polymer cover obviously enhances biocompatibility of nanoparticles.
Keywords: 
nanoparticles, platelets, activation, degranulation

Список литературы: 
  1. Kubik T., Bogunia-Kubik K., Sugisaka M. Nanotechnology on duty in medical applications. Curr. Pharm. Biotechnol. 2005; 6: 17–33.
  2. Bhirde A.A., Patel V., Gavard J., Zhang U., Sousa A.A., Masedunskas A., Leapman R.D., Weigert R., Gutkind J.S., Rusling J.F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano. 2009; 3: 307.
  3. Stevens K.N., Crespo-Biel O., van den Bosch E.E., Dias A.A., Knetsch M.L., Aldenhoff Y.B., van der Veen F.H., Maessen J.G., Stobberingh E.E., Koole L.H. The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials. 2009; 30 (22): 3682–90.
  4. Gudkov S.V., Bruskov V.I., Kulikov A.V., Sharapov M.G., Kulikov D.A., Molochkov A.V. Bioantioksidanty (chast` 2). Al`manah klinicheskoy mediciny. 2014; 31: 65–9. [Gudkov S.V., Bruscov V.I., Kulikov A.V., Sharapov M.G., Kulikov D.A., Molochkov A.V. Bioantioxidants (part 2). Almanac of clinical medicine. 2014; 31: 65–9 (in Russian)]
  5. Nagasaki Y. Construction of a densely poly(ethylene glycol)-chain-tethered surface and its performance. Polymer J. 2011; 43: 949–58.
  6. Silva G.A. Introduction to nanotechnology and its applications to medicine. Surg Neurol. 2004; 61: 216–20.
  7. Huang X., Jain P., El-Sayed I.H., El-Sayed M.A. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine. 2007; 2: 681–93.
  8. Liao H., Nehl C.L., Hafner J.H. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine. 2006; 1: 201–8.
  9. Gmoshinskiy I.V., Smirnova V.V., Hotimchenko S.A. Sovremennoe sostoyanie problemy ocenki bezopasnosti nanomaterialov. Rossiyskie nanotehnologii. 2010; 9–10: 6–11. [Gmoshinskiĭ I.V., Smirnova V.V., Khotimchenko S.A. Current view on nanomaterials’ safety valuing. Russian Nanotechnologies. 2010; 9–10: 6–11 (in Russian)]
  10. Mayer A., Vadon M., Rinner B., Novak A., Wintersteiger R., Frohlich E. The role of nanoparticle size in hemocompatibility. Toxicology. 2009; 258: 139–47.
  11. Jin C.Y., Zhu B.S., Wang X.F., Lu Q.H. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem. Res. Toxicol. 2008; 21 (9): 1871–7.
  12. Park E.J., Yi J., Chung K.H., Ryu D.Y. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Lett. 2008; 180 (3): 222–9.
  13. Brayner R., Ferrari-Iliou R., Brivois N., Djediat S., Benedetti M.F., Fiévet F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 2006; 6 (4): 866–70.
  14. Karlsson H.L., Cronholm P., Gustafsson J., Möller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem. Res. Toxicol. 2008; 21 (9): 1726–32.
  15. Šimundić M., Drašler B., Šuštar V., Zupanc J., Štukelj R., Makovec D., Erdogmus D., Hägerstrand H., Drobne D., Kralj-Iglič V. Effect of engineered TiO2 and ZnO nanoparticles on erythrocytes, platelet-rich plasma and giant unilamelar phospholipid vesicles. BMC Vet Res. 2013; 9: 7; 1–13.
  16. Zhu M.T., Feng W.Y., Wang Y. et al. Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol. Sci. 2009; 107 (2): 342–51.
  17. Babushkin A.V., Chekanov A.V., Baranova O.A., Solov`eva E`.Yu., Fedin A.I., Levin A.D., Mudrov V.P., Kazarinov K.D., Stamm M.V. Vliyanie nanochastic zolota na sistemu gemostaza cheloveka. Medicinskiy alfavit. Sovremennaya laboratoriya. 2013; 2: 25–8. [Babushkin A.V., Chekanov A.V., Baranova O.A., Solov’eva E.Yu., Fedin A.I. Levin A.D., Mudrov V.P., Kazarinov K.D., Stamm M.V. Nano-gold particles’ influence on human hemostasis system. Medicinskyj Alfavit. Sovremennaya Laboratorya. 2013; 2: 25–8 (in Russian)]
  18. Santos-Martinez M.J., Rahme K., Corbalan J.J., Faulkner C., Holmes J.D., Tajber L., Medina C., Radomski M.W. Pegylation increases platelet biocompatibility of gold nanoparticles. J. Biomed. Nanotechnol. 2014; 10 (6): 1004–15.
  19. Corbalan J.J., Medina C., Jacoby A., Malinski T., Radomski M.W. Amorphous silica nanoparticles aggregate human platelets: potential implications for vascular homeostasis. Int. J. Nanomedicine. 2012; 7: 631–9.
  20. Nemmar A., Yuvaraju P., Beegam S., Yasin J., Dhaheri R.A., Fahim M.A., Ali B.H. In vitro platelet aggregation and oxidative stress caused by amorphous silica nanoparticles. Int. J. Physiol. Pathophysiol. Pharmacol. 2015; 7 (1): 27–33.
  21. Kim D., Finkenstaedt-Quinn S., Hurley K.R., Buchman J.T., Haynes C.L. On-chip evaluation of platelet adhesion and aggregation upon exposure to mesoporous silica nanoparticles. Analyst. 2014; 139 (5): 906–13.
  22. Slowing I.I., Vivero-Escoto J.L., Wu C.W., Lin V.S. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008; 60 (11): 1278–88.
  23. Shrivastava S., Singh S.K., Mukhopadhyay A., Sinha A.S., Mandal R.K., Dash D. Negative regulation of fibrin polymerization and clot formation by nanoparticles of silver. Colloids Surf B Biointerfaces. 2011; 82 (1): 241–6.
  24. Bandyopadhyay D., Baruah H., Gupta B., Sharma S. Silver nano particles prevent platelet adhesion on immobilized fibrinogen. Indian J. Clin. Biochem. 2012; 27 (2): 164–70.
  25. Makarov M.S. Polozhitel`nye i otricatel`nye storony adgezivnoy aktivnosti trombocitov cheloveka. Rossiyskiy medicinskiy zhurnal. 2015; 21 (5): 34–40. [Makarov M.S. Positive ans negative effects of human platelet adhesion. Rossijskyj medicinskyj zurnal. 2015; 21 (5): 34–40 (in Russian)]
  26. Vasil`ev R.B., Dirin D.N. Kvantovye tochki: sintez, svoystva, primenenie. M.: MGU, 2007. [Vasil’ev R.B., Dyrin D.N. Quantum dots: synthesis, properties, use. M.: MSU, 2007 (in Russian)]
  27. Dunpall R., Nejo A.A., Pullabhotla V.S., Opoku A.R., Revaprasadu N., Shonhai A. An in vitro assessment of the interaction of cadmium selenide quantum dots with DNA, iron, and blood platelets. IUBMB Life. 2012; 64 (12): 995–1002.
  28. Zhang Y., Chen W., Zhang J. et al. In vitro and in vivo toxicity of CdTe nanoparticles. J. Nanoscience Nanotechnol. 2007; 7 (2): 497–503.
  29. Evseev A.K., Pinchuk A.V., Andreev V.N., Gol`din M.M. Analiz zavisimostey potenciala platinovogo e`lektroda pri razomknutoy cepi ot vremeni v syvorotke krovi. Fizikohimiya poverhnosti i zashhita materialov. 2014; 50 (4): 445–8. [Evseev A.K., Pynchuk A.V., Andreev V.N., Gol’din M.M. Time-dependent analysis of time-platinum electrode potential with disconnected chain in human serum. Physikochimia poverchnosty i zaschita materialov. 2014; 50 (4): 445–8 (in Russian)]
  30. Radomski A., Jurasz P., Alonso-Escolano D., Drews M, Morandi M, Malinski T, Radomski MW. et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br. J. Pharmacol. 2005; 146 (6): 882–93.
  31. Semberova J., De Paoli Lacerda S.H., Simakova O., Holada K., Gelderman M.P., Simak J. Carbon nanotubes activate blood platelets by inducing extracellular Ca2+ influx sensitive to calcium entry inhibitors. Nano Lett. 2009; 9: 3312–7.
  32. Ding L.H., Stilwell J, Zhang H.J. et al. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nanoonions on human skin fibroblast. Nano Lett. 2005; 5 (12): 2448–64.
  33. Davoren M., Herzog E, Casey A. et al. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol. In Vitro. 2007; 21 (3): 438–48.
  34. Peters A., Dockery D.W., Muller J.E., Mittleman M.A. Increased particulate air pollution and the triggering of myocardial infarction. Circulation. 2001; 103: 2810–15.
  35. Mazzatenta A., Giugliano M., Campidelli S., Gambazzi L., Businaro L., Markram H., Prato M., and Ballerini L. Interfacing Neurons with Carbon Nanotubes: Electrical Signal Transfer and Synaptic Stimulation in Cultured Brain Circuits. The Journal of Neuroscience. 2007; 27 (26): 6931–6.
  36. Ramtoola Z., Lyons P., Keohane K., Kerrigan S.W., Kirby B.P., Kelly J.G. Investigation of the interaction of biodegradable micro- and nanoparticulate drug delivery systems with platelets. J. Pharm. Pharmacol. 2011; 63 (1): 26–32.
  37. Gowda R., Jones N.R., Banerjee S., Robertson G.P. Use of Nanotechnology to Develop Multi-Drug Inhibitors For Cancer Therapy. J. Nanomed Nanotechnol. 2013; 4 (6): 184.
  38. Shimizu M., Yoshitomi T., Nagasaki Y. The behavior of ROS-scavenging nanoparticles in blood. J. Clin. Biochem. Nutr. 2014; 54 (3): 166–73.
  39. Smyth E., Solomon A., Vydyanath A., Luther P.K., Pitchford S., Tetley T.D., Emerson M. Induction and enhancement of platelet aggregation in vitro and in vivo by model polystyrene nanoparticles. Nanotoxicology. 2015; 9 (3): 356–64.
  40. Dobrovolskaia M.A., Patri A.K., Simak J., Hall J.B., Semberova J., De Paoli Lacerda S.H., McNeil S.E. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol. Pharm. 2012; 9 (3): 382–93.
  41. Makarov M.S. Nekanonicheskie sposoby aktivacii trombocitov cheloveka. Medicinskiy alfavit. Sovremennaya laboratoriya. 2015; 3 (11): 30–6. [Makarov M.S. Non-canonic ways of human platelets’ activation. Medicinskyj Alfavit. Sovremennaya Laboratorya. 2015; 3 (11): 30–6 (in Russian)]
  42. Pinto L.M., Pereira R., de Paula E., de Nucci G., Santana M.H., Donato J.L. Influence of liposomal local anesthetics on platelet aggregation in vitro. J. Liposome Res. 2004; 14 (1–2): 51–9.
  43. Kuznetsova N.R., Sevrin C., Lespineux D., Bovin N.V., Vodovozova E.L., Mészáros T., Szebeni J., Grandfils C. Hemocompatibility of liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the lipid bilayer. J. Control Release. 2012; 160 (2): 394–400.
  44. Suslina Z.A., Prohorov D.I., Shilova A.G., Kaplun A.P., Ionova V.G., Seyfulla R.D. Vliyanie acetilsalicilovoy kisloty v komplekse s lipidnymi nanostrukturami razlichnogo sostava na agregaciyu trombocitov cheloveka. E`ksperimental`naya i klinicheskaya farmakologiya. 2011; 5: 31–4. [Suslina Z.A., Prokhorov D.I., Shilova A.G., Kaplun A.P., Ionova V.G., Seĭfulla R.D. Effect of acetylsalicylic acid in complex with lipid nanostructures of various compositions on human platelet aggregation. Eksp Klin Farmakol. 2011; 74 (5): 31–4 (in Russian)]
  45. Ravikumar M., Modery C.L., Wong T.L., Dzuricky M., Sen Gupta A. Mimicking adhesive functionalities of blood platelets using ligand-decorated liposomes. Bioconjug Chem. 2012; 23 (6): 1266–75.
  46. Srinivasan R., Marchant R.E., Gupta A.S. In vitro and in vivo platelet targeting by cyclic RGD-modified liposomes. J Biomed Mater Res A. 2010; 93 (3): 1004–15.
  47. Okamura Y., Takeoka S., Eto K., Maekawa I., Fujie T., Maruyama H., Ikeda Y., Handa M. Development of fibrinogen gamma-chain peptide-coated, adenosine diphosphate-encapsulated liposomes as a synthetic platelet substitute. J. Thromb. Haemost. 2009; 7 (3): 470–7.
  48. Hernández M.R., Urbán P., Casals E., Estelrich J., Escolar G., Galán A.M. Liposomes bearing fibrinogen could potentially interfere with platelet interaction and procoagulant activity. Int J. Nanomedicine. 2012; 7: 2339–47.
  49. Suzuki H., Okamura Y., Ikeda Y., Takeoka S., Handa M. Ultrastructural analysis of thrombin-induced interaction between human platelets and liposomes carrying fibrinogen γ-chain dodecapeptide as a synthetic platelet substitute. Thromb Res. 2011; 128 (6): 552–9.