COMPARATIVE STUDY OF THE СARDIOPROTECTIVE EFFECT OF TRIMETAZIDINE AND FABOMOTIZOLE HYDROCHLORIDE IN ABSTINENTRATS WITH ESTABLISHED ALCOHOLIC CARDIOMYOPATHY

DOI: https://doi.org/10.29296/24999490-2018-03-12

I.A. Miroshkina, E.O. Ionova, A.V. Sorokina, V.N. Stolyaruk, M.B. Vititnova, I.B. Tsorin, L.G. Kolik, S.A. Kryzhanovskii, A.D. Durnev Zakusov Institute of Pharmacology, Baltiyskaya Street, 8, Moscow, 125315, Russian Federation E-mail: [email protected]

Introduction. Alcoholic cardiomyopathy is the leading cause of death in persons withchronic alcoholism. This disease is caused by ethanolinduced toxic damage to the heart muscle, which leads to dilated heart failure and the development of the electric myocardium instability. The study of new original drugs reducing the severity of the dilated heart failure and having the pronounced antiarrhythmic activity is actual. The aim of the study. The comparative study of the р-FОХinhibitortrimetazidine and σ1-receptor agonistfabomotizole hydrochloride сardioprotective effectin the alcoholic cardiomyopathy translation model in white nonlinear abstinent rats. Methods. Fabomotizole hydrochloride andtrimetazidinewere introduced intraperitoneally during 28 days in doses of 15 and 30 mg/kg/day, respectively. Cardioprotective effects of drugs were investigated with the use of echocardiographic, morphometric and electrophysiological methods. Results. Trimetazidine and fabomotizole hydrochloride are shown to contribute reverse remodeling of the left and right heart ventricules, restoring the normal geometry of the heart, normalizing the heart contractile function. In addition, fabomotizole hydrochloride increased the threshold of electric ventricular fibrillation. Conclusion. Fabomotizole hydrochloride and trimetazidine decrease the severity of dilated heart failure. Fabomotizole hydrochloride unlike trimetazidine restores the myocardium electrical stability
Keywords: 
alcoholic cardiomyopathy, translation model, trimetazidine, fabomotizole hydrochloride, dilated heart failure, rats

Список литературы: 
  1. Fuster V., Kelly B.B. (Eds.). Promoting cardiovascular health in the developing world: a critical challenge to achieve global health. Washington: The National Academies Press. 2010; 49–123.
  2. Semenova V.G., Antonova O.I., Evdokushkina G.N., Gavrilova N.S. Poteri naseleniya Rossii v 2000–2008 gg., obuslovlennye alkogolem: masshtaby, struktura, tendencii. Social`nye aspekty zdorov`ya naseleniya. 2010; 2: 34–7. [Semenova VG., Antonova O.I., Evdokushkina G.N., Gavrilova N.S. The loss of the Russian population in 2000–2008 gg., caused by alcohol: the scale, structure, trends. Social’nye aspekty zdorov’ja naselenija. 2010; 2: 34–7 (in Russian)]
  3. Chazov E.I. Vnezapnaya smert`. 2013. http: // www. medicusamicus. sot/ index. php?action=2x 1229h 1. [Chazov E.I. Sudden death. 2013. http: // www. medicusamicus. com/ index. php?action=2x1229x1 (in Russian)]
  4. Wannamethee G., Shaper A.G. Alcohol and sudden cardiac death. Br. Heart J. 1992; 68 (5): 443–8.
  5. Drapkina O.M. Problema alkogol`noy kardiomiopatii. E`ffektivnaya farmakoterapiya v kardiologii i angiologii. 2008; 1: 30–4. [Drapkina O.M. The problem of alcoholic cardiomyopathy. Effective Pharmacotherapy In cardiology and angiology. 2008; 1: 30–4 (in Russian)]
  6. Kantor P.F., Lucien A., Kozak R., Lopaschuk G.D. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation toglucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyal coenzyme a tholase. Circ. Res. 2000; 86: 580–8.
  7. Li H., Liu F., Li X., et al. Clinical effects of carvedilol and trimetazidine for the treatmentof alcoholic myocardiopathy: Experimental and therapeutic medicine. 2016; 12: 979–82.
  8. Kryzhanovskiy S.A, Corin I.B., Kolik L.G., Stolyaruk V.N., Vititnova M.B., Ionova E.O., Sorokina A.V., Miroshkina I.A, Durnev A.D., Seredenin S.B. K vozmozhnosti ispol`zovaniya afobazola dlya lecheniya alkogol`noy kardiomiopatii i profilaktiki soputstvuyushhih ey oslozhneniy. Molekulyarnaya medicina. 2015; 4: 35–42. [Kryzhanovskii S.A., Tsorin I.B., Kolik L.G., Stolyaruk V.N., Vititnova M.B., Ionova E.O., Sorokina A.V., Miroshkina I.A., Durnev A.D., Seredenin S.B. About possibility of the use of afobazole for treatment of alcoholic cardiomyopathy and prevention of its concomitant complications. Molecular Medicine. 2015; 4: 35–42 (in Russian)]
  9. Seredenin S.B., Corin I.B., Vititnova M.B., Stolyaruk V.N., Chichkanov G.G., Kryzhanovskiy S.A. K mehanizmu protivoishemicheskogo deystviya preparata «Afobazol». Byull. e`ksp. biol. i med. 2013; 155 (6): 723–7. [Seredenin S.B., Tsorin I.B., Vititnova M.B., Stolyaruk V.N., Chichranov G.G., Kryzhanovskii S.A. On the mechanism of anti-ischemic effects of afobazole. Bulletin of Experimental Biology and Medicine. 2013; 155 (6): 723–7 (in Russian)]
  10. Kryzhanovskiy S.A., Corin I.B., Vititnova M.B. K mehanizmu antiishemicheskogo deystviya afobazola. Innovacii v sovremennoy farmakologii. Mat. IV s``ezda farmakologov, 18–21 sentyabrya 2012. M.: «Folium»: 103. [Kryzhanovskii S.A., Tsorin I.B., Vititnova M.B. On the mechanism of anti-ischemic effects of afobazole. Innovations in modern pharmacology. Materials of the IV congress of pharmacologists, September 18–21 2012. M.: «Folium»: 103 (in Russian)]
  11. Kryzhanovskiy S.A., Corin I.B., Kolik L.G., Stolyaruk V.N., Vititnova M.B., Ionova E.O., Sorokina A.V., Durnev A.D., Seredenin S.B. Translyacionnaya model` alkogol`noy kardiomiopatii. Molekulyarnaya medicina. 2015; 3: 40–7. [Kryzhanovskii S.A., Tsorin I.B., Kolik L.G., Stolyaruk V.N., Vititnova M.B., Ionova E.O., Sorokina A.V., Durnev A.D., Seredenin S.B. Translation model of alcoholic cardiomyopathy. Molecular Medicine. 2015; 3: 40–7 (in Russian)]
  12. Stolyaruk V.N., Kryzhanovskiy S.A., Corin I.B., Varkov A.I., Ionova E.O., Vititnova M.B. K vozmozhnosti ispol`zovaniya afobazola dlya profilaktiki formirovaniya postinfarktnoy serdechnoy nedostatochnosti. E`ksperim. i klin. farmakologiya. 2015. Prilozhenie: 55–56. [Stolyaruk V.N., Kryzhanovskii S.A., Tsorin I.B., Varkov A.I., Ionova E.O., Vititnova M.B. About possibility of the use of afobazole for prevention of postinfarction heart failure. Russian Journal of Experimental and Clinical Pharmacology. 2015. Attachment: 55–56 (in Russian)]
  13. Kryzhanovskiy S. A., Antipova T.A., Kruglov S.V., Ionova E. O., Stolyaruk V. N., Vititnova M. B. Vliyanie afobazola na uroven` inducibel`noy NO-sintazy v ishemizirovannom miokarde. Molekulyarnaya medicina. 2016; 3: 26–31. [Kryzhanovskii S.A., Antipova T.A., Kruglov S.V., Ionova E.O., Stolyaruk V.N., Vititnova M.B. Afobazole effect on inducible NO-synthase level in ischemic myocardium. Molecular Medicine. 2016; 3: 26–31 (in Russian)]
  14. Kara A.F., Demiryurek S., Celik A., Tarakcioglu M., Demiryurek A.T. Effects of chronic trimetazidine treatment on myocardial preconditioning in anesthetized rats. Fundam. Clin. Pharmacol. 2006; 20 (5): 449–59.
  15. Zhang R.Y., Yu P., Wang F., Shen J.X., Wang Y.M. Effects of Trimetazidine upon ventricular remodeling and GLUT4 in diabetic rats after myocardial infarction. Zhonghua Yi Xue Za Zhi. 2009; 89 (18): 1240–5.
  16. Lang R.M., Bierig M., Devereux R.B., Flachskampf F.A., Foster E., Pellikka P.A, Picard M.H., Roman M.J., Seward J., Shanewise J.S., Solomon S.D., Spencer K.T., Sutton M.S., Stewart W.J., Chamber Quantification Writing Group; American Society jf Echocardiography’s Guidelines and Standarts Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standarts Committee and the Chamber Quantification Writing Group, developed in conjunction with European Association of Echocardiography, a branch of the European Society of Cardiology. J.M. Soc. Echocardiogr. 2005; 18: 1440–63.
  17. Vasil`ev S.V., Maychuk E.Yu., Vasil`ev V.Yu. Membranosohranyayushhee deystvie trimetazidina u bol`nyh ostrym infarktom miokarda. Ros. kardiol. zh. 2014; 12: 80–4. [Vasilyev S.V., Maychuk E. Yu., Vasilyev V. Yu. Membrane-saving action of trimetazidine in subjects with acute myocardial infarction. Russian Journal of Cardiology 2014; 12: 80–4 (in Russian)]
  18. Soukoulis V., Boden W. E., Smith Jr S. C., O’Gara P. T. Nonantithrombotic Medical Options in Acute Coronary Syndromes: Old Agents and New Lines on the Horizon: Circulation Research. 2014; 114: 1944–58.
  19. Ho E., Karimi Galougashi K., Liu C.C. et al. Biological markers of oxidative stress: Applications to cardiovascular research and practice Redox Biology. 2013. 13: 483–91.
  20. Piano M.R., Phillips Sh.A. Alcoholic cardiomyopathy: Pathophysiologic insight. Cardiovasc. Toxicol. 2014; 14 (4): 291–308.
  21. Zhang L., Ding W., Wang Z. et.al. Early administration of trimetazidine attenuates diabetic cardiomyopathy in rats by alleviating fibrosis, reducing apoptosis and enhancing autophagy: J. of Translational Medicine. 2016; 14 (1): 109.
  22. Tsioufis K., Andrikopoulos G., Manolis A. Trimetazidine and Cardioprotection: Facts and Perspectives: Angiology. 2014; 5: 1–7.
  23. Kryzhanovskiy S.A., Stolyaruk V.N., Vititnova M.B., Corin I.B., Seredenin S.B. K mehanizmu protivofibrillyatornogo deystviya afobazola. Byull. e`ksp. biol. i med. 2010: 149 (3): 290–3. [Kryzhanovskii S.A., Stolyaruk V.N., Vititnova M.B., Tsorin I.B., Seredenin S.B. On the mechanism of antifibrillatory effect of afobazole. Bulletin of Experimental Biology and Medicine. 2010: 149 (3): 290–3 (in Russian)]
  24. Cobos E.J., Entrena J.M., Nieto F.R., et al. Pharmacology and therapeutic potential of sigma(1) receptor ligands. Curr Neuropharmacol. 2008; 6 (4): 344–66.
  25. Johannessen M.A., Ramachandran S., Riemer L. Voltage-gated sodium channel modulation by sigma receptors in cardiac myocytes and heterologous systems. Am. J. Physiol. Cell Physiol. 2009: 296 (5): 1049–57.
  26. Aydar E., Palmer C.P., Klyachko V.A., Jackson M.B. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron. 2002; 34 (3): 399–410.
  27. Bhuiyan M. S., Fukunaga K. Targeting sigma-1 receptor signaling bu endogenous ligands for cardioprotection. Expert Opin. Ther. Targets. 2011; 15 (2): 145–55.
  28. Hayashi T., Su T.P. Cholesterol at the endoplasmatic reticulum: roles of the sigma-1 receptor chaperone and implications thereof in human diseases. Subcell Biochem. 2010; 51: 381–98.
  29. Tagashira H., Bhuiyan M.S, Fukunaga K. Diverse regulation of IP3 and ryanodine receptors by pentazocine through σ1-receptor in cardiomyocytes: American Journal of Physiology – Heart and Circulatory Physiology. 2013; 305: 1201–12.
  30. Wu Z., Bowen W.D. Role sigma-1 receptor C-terminal segment in inositol 1,4,5-triphosphate receptor activation: constitutive enhancement of calcium signaling in MCF-7 tumor cells. J. Biol. Chem. 2008; 283 (42): 28198–215.
  31. Anelli T., Bergamelli L., Margittai E. Ero 1α regulates Ca(2+) fluxes at the endoplasmatic reticulum-mitochondria interface (MAM). Antioxid Redox Signal. 2012; 16 (10): 1077–87.
  32. Ehmke N. The sigma-1 receptor: a molecular chaperone for the heart and soul? Cardiovasc Ke. 2012; 93 (1): 6–7.
  33. Seredenin S.B., Voronin M.V. Neyroreceptornye mehanizmy deystviya afobazola. E`ksperim. i klin. farmakologiya. 2009: 72 (1): 3–11. [Seredenin S.B., Voronin M.V. Neuroreceptor mechanisms involved in the action of afobazole. Russian J. of Experimental and Clinical Pharmacology. 2009: 72 (1): 3–11 (in Russian)]