MACROPHAGAL ADSORPTION OF MULTIPOTENT MESENCHYMAL STROMAL CELLS AND THEIR DEBRIS FROM VASCULAR BED PROVES THE MIGRATION OF THESE CELLULAR ELEMENTS THROUGH THE VESSELS AFTER TISSUE INJECTION

DOI: https://doi.org/10.29296/24999490-2018-04-10

I.V. Maiborodin(1), R.V. Maslov(1), T.V. Mikheeva(1), A.A. Elovskiy(3), N.F. Figurenko(1), V.I. Maiborodina(2), A.I. Shevela(1), V.V. Anishchenko(3) 1The Center of New Medical Technologies, Institute of Chemical Biology and Fundamental Medicine, Akademika Lavrenteva str., 8, Novosibirsk, 630090, Russian Federation; 2Institute of Molecular Pathology and Pathomorphology, Akademika Timakova, 2, Novosibirsk, 630117, Russian Federation; 3JSC Medical Center «Avicenna», Uritskogo str., 2, Novosibirsk, 630007, Russian Federation E-mail: [email protected]

Introduction. The use of cell technologies has particular effectiveness in the treatment of many diseases. However, the literature contains data concerning macrophages ability of a phagocytosis and lysisofautologic multipotent mesenchymal stromal cells of a bone marrow origin (AMMSCBMO) injected into tissues. Also,the detected presence of macrophages with the debris of entered AMMSCBMO in the regional lymph nodes can indirectly demonstrate the penetration of AMMSCBMO or their fragments into the blood or lymphatic vessels. The aim of the study. To prove a possibility of AMMSCBMO migration in vessels after a tissue injection and to define a role of macrophages in an elimination of these AMMSCBMO from the vascular bed. Methods. The condition of a fatty tissue and the capsule around the inguinal lymph nodes (ILN) after the injection through the skin into a projection of the ligated rat femoral vein of AMMSCBMO with a transfected GFP-gene and membranes stained by Vybrant® CM Dil was studied by the method of a fluorescent light microscopy. Results. Since 2–3 weeks after AMMSCBMO introduction in tissue both with the blocked venous outflow and without changes of blood flow, near vessels of a paranodal fatty tissue and ILN capsule the macrophages with shallow inclusions stained by Vybrant® CM Dil and very intensive fluorescence under the use of rhodamine filter were found. Conclusion. AMMSCBMO after injection into tissues can partially migrate in blood and lymphatic vessels. The phagocytosis of entered AMMSCBMO and their debris from vessels is possible by macrophages located near vessels. The presence of macrophages with AMMSCBMO debris in tissues around ILN since 2–5 weeks after the use of cell technologies indicates both to the maximum in the AMMSCBMO destruction, and the most expressed AMMSCBMO elimination from the structures created with their participation it rats to this time.
Keywords: 
multipotent mesenchymalstromal cells, distribution of stromal cells, macrophages, regional lymph nodes

Список литературы: 
  1. Varol C., Mildner A., Jung S. Macrophages: development and tissue specialization. Annu Rev. Immunol. 2015; 33: 643–75.
  2. Okabe Y., Medzhitov R. Tissue biology perspective on macrophages. Nat Immunol. 2016; 17 (1): 9–17.
  3. Mayborodin I.V., Morozov V.V., Anikeev A.A., Figurenko N.F., Maslov R.V., Chastikin G.A., Matveeva V.A., Mayborodina V.I. Makrofagal`nyy otvet u krys na vvedenie mul`tipotentnyh mezenhimal`nyh stromal`nyh kletok v region hirurgicheskoy travmy. Novosti hirurgii. 2017; 25 (3): 233–41. [Maiborodin I.V., Morozov V.V., Anikeev A.A., Figurenko N.F., Maslov R.V., Chastikin G.A., Matveeva V.A., Maiborodina V.I. Macrophage reaction to multipotent mesenchymal stromal cells introduction into surgical trauma site in rats. Novosti Khirurgii. 2017; 25 (3): 233–41 (in Russian)]
  4. Mayborodin I.V., Morozov V.V., Matveeva V.A., Anikeev A.A., Figurenko N.F., Maslov R.V., Chastikin G.A., Mayborodina V.I. Rezul`taty ispol`zovaniya kletochnyh tehnologiy pri ligirovanii magistral`noy veny v e`ksperimente. Byulleten` e`ksperimental`noy biologii i mediciny. 2017; 164 (7): 73–80. [Maiborodin I.V., Morozov V.V., Matveeva V.A., Anikeev A.A., Figurenko N.F., Maslov R.V., Chastikin G.A., Maiborodina V.I. Results of experimental ligation of the main vein with the use of cell technologies. Bull Exp. Biol. Med. 2017; 164 (1): 61–7 (in Russian)]
  5. Wu X., Pan L., Wang Z., Liu X., Zhao D., Zhang X., Rupp R.A., Xu J. Ultraviolet irradiation induces autofluorescence enhancement via production of reactive oxygen species and photodecomposition in erythrocytes. Biochem Biophys Res Commun. 2010; 396 (4): 999–1005.
  6. Campo J.J., Aponte J.J., Nhabomba A.J., Sacarlal J., Angulo-Barturen I., Jiménez-Diaz M.B., Alonso P.L., Dobaño C. Feasibility of flow cytometry for measurements of Plasmodium falciparum parasite burden in studies in areas of malaria endemicity by use of bidimensional assessment of YOYO-1 and autofluorescence. J. Clin. Microbiol. 2011; 49 (3): 968–74.
  7. Watson J. Suppressing autofluorescence of erythrocytes. Biotech Histochem. 2011; 86 (3): 207.
  8. Mendes-Jorge L., Ramos D., Luppo M., Llombart C., Alexandre-Pires G., Nacher V., Melgarejo V., Correia M., Navarro M., Carretero A., Tafuro S., Rodriguez-Baeza A., Esperança-Pina J.A., Bosch F., Ruberte J. Scavenger function of resident autofluorescent perivascular macrophages and their contribution to the maintenance of the blood-retinal barrier. Invest Ophthalmol Vis Sci. 2009; 50 (12): 5997–6005.
  9. Mitchell A.J., Pradel L.C., Chasson L., van Rooijen N., Grau G.E., Hunt N.H., Chimini G. Technical advance: autofluorescence as a tool for myeloid cell analysis. J. Leukoc Biol. 2010; 88 (3): 597–603.
  10. Li F., Yang M., Wang L., Williamson I., Tian F., Qin M., Shah P.K., Sharifi B.G. Autofluorescence contributes to false-positive intracellular Foxp3 staining in macrophages: a lesson learned from flow cytometry. J. Immunol. Methods. 2012; 386 (1–2): 101–7.
  11. Lei L., Tzekov R., Tang S., Kaushal S. Accumulation and autofluorescence of phagocytized rod outer segment material in macrophages and microglial cells. Mol Vis. 2012; 18: 103–13.
  12. Luhmann U.F., Robbie S., Munro P.M., Barker S.E., Duran Y., Luong V., Fitzke F.W., Bainbridge J.W., Ali R.R., MacLaren R.E. The drusenlike phenotype in aging Ccl2-knockout mice is caused by an accelerated accumulation of swollen autofluorescent subretinal macrophages. Invest Ophthalmol Vis Sci. 2009; 50 (12): 5934–43.
  13. Mitchell A.J., Pradel L.C., Chasson L., Van Rooijen N., Grau G.E., Hunt N.H., Chimini G. Technical advance: autofluorescence as a tool for myeloid cell analysis. J. Leukoc Biol. 2010; 88 (3): 597–603.
  14. Potter K.A., Simon J.S., Velagapudi B., Capadona J.R. Reduction of autofluorescence at the microelectrode-cortical tissue interface improves antibody detection. J. Neurosci. Methods. 2012; 203 (1): 96–105.
  15. Liu S., Jiang L., Li H., Shi H., Luo H., Zhang Y., Yu C., Jin Y. Mesenchymal stem cells prevent hypertrophic scar formation via inflammatory regulation when undergoing apoptosis. J. Invest Dermatol. 2014; 134 (10): 2648–57.
  16. Yates C.C., Nuschke A., Rodrigues M., Whaley D., Dechant J.J., Taylor D.P., Wells A. Improved transplanted stem cell survival in a polymer gel supplemented with tenascin C accelerates healing and reduces scarring of murine skin wounds. Cell Transplant. 2017; 26 (1): 103–13.
  17. Mayborodin I.V., Gavrilin V.N., Borodin Yu.I., Reyhert V.E`. Klapany kraevogo sinusa limfaticheskih uzlov. Morfologiya. 1996; 110 (6): 86–8. [Maiborodin I.V., Gavrilin V.N., Borodin Iu.I., Reikhert V.E. The valves of the marginal sinus of the lymph nodes. Morfologiia. 1996; 110 (6): 86–8 (in Russian)]