NON-CODING RNAS: PHYSIOLOGICAL FUNCTIONS AND ROLE IN PATHOGENESIS OF VASCULAR DISEASES

DOI: https://doi.org/10.29296/24999490-2018-05-03

K.A. Aitbaev(1), I.T. Murkamilov(2, 3), V.V. Fomin(4), Zh.A. Murkamilova(5) 1-Scientific Research Institute of Molecular Biology and Medicine, 3, T. Moldo str., Bishkek, 720040, Kyrgyzstan; 2-I.K. Akhunbaev Kyrgyz State Medical Academy, 92, Akhunbaev str., Bishkek 720020, Kyrgyzstan; 3-First President of Russia B.N. Yeltsin Kyrgyz Russian Slavic University, 44, Kievskaya str., Bishkek, 720000, Kyrgyzstan; 4-First Moscow State Medical University named after I.M. Sechenov, 2, Bolshaya Рirogovskaya str., Moscow, 119991, Russian Federation; 5Family Medicine Center №7, 3/1, T. Moldo str, Bishkek, 720040, Kyrgyzstan E-mail: [email protected]

Epigenetics studies inherited mechanisms capable of modulating gene expression without altering the DNA nucleotide sequence. Until very recently, epigenetics included inherited mechanisms, such as DNA methylation and histone modification. As of today, a large class of non-coding RNAs (ncRNAs) has also been added to this area of research. Thousands of ncRNAs have already been identified and a direct relationship between the impairment in their content and the development of cardiovascular diseases (CVD) has been identified. This large group of gene modulators is divided into short ncRNAs and long ncRNAs. Among the class of short ncRNAs, the most well-known include microRNAs mainly inhibiting the expression of genes, and their involvement in CVD pathogenesis has been largely studied. At the same time, the role of long ncRNA in the development of CVD is still poorly understood and requires further research. This article summarizes the reports concerning latest studies on the physiological function of ncRNA and their participation in the development of vascular diseases.
Keywords: 
vascular diseases, epigenetics, noncoding RNA, endothelial cells, smooth muscle cells

Список литературы: 
  1. Biol. 1958; 12: 138–63.
  2. Tiguncev V.V., Ivanova S.A., Serebrov V.Yu., Buhareva M.B. Malye nekodiruyushhie RNK kak perspektivnye biomarkery: biogenez i terapevticheskie strategii. Byulleten` sibirskoy mediciny. 2016; 15 (2): 112–26. [Tiguncev V.V., Ivanova S.A., Serebrov V.Ju., Buhareva M.B. Malye nekodirujushhie RNK kak perspektivnye biomarkery: biogenez i terapevticheskie strategii. Bjulleten’ sibirskoj mediciny. 2016; 15 (2): 112–26 (in Russian)]
  3. Boon R.A., Jae N., Holdt L., Dimmeler S. Long Noncoding RNAs: From clinical Genetics to therapeutic Targets? J. Am. Coll. Cardiol. 2016; 67: 1214–26.
  4. Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116: 281–97. DOI: 10.1016/S0092-8674(04)00045-5.
  5. Eulalio A., Huntzinger E., Nishihara T., Rehwinkel J., Fauser M., Izaurralde E. Deadenylation is a widespread effect of miRNA regulation. RNA. 2009; 15:21–32. DOI: 10.1261/rna.1399509.
  6. Place R.F., Li L.C., Pookot D., Noonan E.J., Dahiya R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA. 2008; 105: 1608–13. DOI: 10.1073/pnas.0707594105.
  7. Qu H., Zheng L., Pu J., Mei H., Xiang X., Zhao X., ... & Tong Q. miRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum Mol Genet. 2015; 24: 2539–51. DOI: 10.1093/hmg/ddv018.
  8. Zhang Y., Fan M., Zhang X., Huang F., Wu K., Zhang J., ... & Zhang H. Cellular microRNAs up-regulate transcription via interaction with promoter TATA-box motifs. RNA. 2014; 20: 1878–89. DOI: 10.1261/rna.045633.114.
  9. Latronico M.V., Elia L., Condorelli G., Catalucci D. Heart failure: targeting transcriptional and post-transcriptional control mechanisms of hypertrophy for treatment. Int J. Biochem. Cell. Biol. 2008; 40: 1643–8. DOI: 10.1016/j.biocel.2008.03.002.
  10. Quintavalle M., Condorelli G., Elia L. Arterial remodeling and atherosclerosis: miRNAs involvement. Vascul Pharmacol. 2011; 55: 106–10. DOI: 10.1016/j.vph.2011.08.216.
  11. Owens G.K., Kumar M.S., Wamhoff B.R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004; 84: 767–801. DOI: 10.1152/physrev.00041.2003.
  12. Marti C.N., Gheorghiade M., Kalogeropoulos A.P., Georgiopoulou V.V., Quyyumi A.A., Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J. Am. Coll. Cardiol. 2012; 60: 1455–69. DOI: 10.1016/j.jacc.2011.11.082.
  13. Suarez Y., Fernandez-Hernando C., Pober J.S., Sessa W.C. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007; 100: 1164–73. DOI: 10.1161/01.RES.0000265065.26744.17.
  14. . Wang S., Aurora A.B., Johnson B.A., Qi X., McAnally J., Hill J.A., ... & Olson E.N. The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell. 2008; 15: 261–71. DOI: 10.1016/j.devcel.2008.07.002.
  15. Bonauer A., Carmona G., Iwasaki M., Mione M., Koyanagi M., Fischer A., ... & Chavakis E. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science. 2009; 324 (5935): 1710–3. DOI: 10.1126/science.1174381.
  16. Hergenreider E., Heydt S., Tréguer K., Boettger T., Horrevoets A.J., Zeiher A.M., ... & Braun T. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol. 2012; 14: 249–56. DOI: 10.1038/ncb2441.
  17. Kohlstedt K., Trouvain C., Boettger T., Shi L., Fisslthaler B., Fleming I. AMP-activated protein kinase regulates endothelial cell angiotensin-converting enzyme expression via p53 and the post-transcriptional regulation of microRNA-143/145. Circ Res. 2013; 112: 1150–8. DOI: 10.1161/CIRCRESAHA.113.301282.
  18. Hoglund V.J., Dong X.R., Majesky M.W. Neointima formation: a local affair. Arterioscler Thromb Vasc Biol. 2010; 30: 1877–9. DOI: 10.1161/ATVBAHA.110.211433.
  19. Jonigk D., Golpon H., Bockmeyer C.L., Maegel L., Hoeper M.M., Gottlieb J., ... & Janciauskiene S. Plexiform lesions in pulmonary arterial hypertension composition, architecture, and microenvironment. Am. J. Pathol. 2011; 179: 167–79. DOI: 10.1016/j.ajpath.2011.03.040.
  20. Wang M., Li W., Chang G.Q., Ye C.S., Ou J.S., Li X.X., ... & Wang S. M.MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler Thromb Vasc Biol. 2011; 31 (9): 2044–53. DOI: 10.1161/ATVBAHA.111.229559.
  21. Ji R., Cheng Y., Yue J., Yang J., Liu X., Chen H., ... & Zhang C. MicroRN expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res. 2007; 100: 1579–88. DOI: 10.1161/CIRCRESAHA.106.141986.
  22. Davis B.N., Hilyard A.C., Lagna G., Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008; 454: 56–61. DOI: 10.1038/nature07086.
  23. Goumans M.J., Liu Z., ten Dijke P. TGF-beta signaling in vascular biology and dysfunction. Cell Res. 2009; 19: 116–27. DOI: 10.1038/cr.2008.326.
  24. McDonald R.A., White K.M., Wu J., Cooley B.C., Robertson K.E., Halliday C.A., ... & George S. J. miRNA-21 is dysregulated in response to vein grafting in multiple models and genetic ablation in mice attenuates neointima formation. Eur Heart J. 2013; 34: 1636–43. DOI: 10.1093/eurheartj/eht105.
  25. McDonald R.A., Halliday C.A., Miller A.M., Diver L.A., Dakin R.S., Montgomery J., ... & Douglas G. Reducing in-stent restenosis: therapeutic manipulation of miRNA in vascular remodeling and inflammation. J. Am. Coll. Cardiol. 2015; 65 (21): 2314–27. DOI: 10.1016/j.jacc.2015.03.549.
  26. Wang D., Deuse T., Stubbendorff M., Chernogubova E., Erben R.G., Eken S.M., ... & Behnisch B. Local MicroRNA modulation using a novel anti-miR-21-eluting stent effectively prevents experimental in-stent restenosis. Arterioscler Thromb Vasc Biol. 2015; 35: 1945–53. DOI: 10.1161/ATVBAHA.115.305597.
  27. Michael M.Z., O’Connor S.M., van Holst Pellekaan N.G., Young G.P., James R.J. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 2003; 1: 882–91.
  28. Cordes K.R., Sheehy N.T., White M.P., Berry E.C., Morton S.U., Muth A.N., ... & Srivastava D. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009; 460: 705–10. DOI: 10.1038/nature08195.
  29. Quintavalle M., Elia L., Condorelli G., Courtneidge S.A. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J. Cell. Biol. 2010; 189: 13–22. DOI: 10.1083/jcb.200912096.
  30. Cheng Y., Liu X., Yang J., Lin Y., Xu D.Z., Lu Q., ... & Zhang C. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 2009; 105: 158–66. DOI: 10.1161/CIRCRESAHA.109.197517.
  31. Boettger T., Beetz N., Kostin S., Schneider J., Krüger M., Hein L., & Braun T. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest. 2009; 119: 2634–47. DOI: 10.1172/JCI38864.
  32. Torella D., Iaconetti C., Catalucci D., Ellison G.M., Leone A., Waring C.D., ... & Condorelli G.MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res. 2011; 109 (8): 880–93. DOI: 10.1161/CIRCRESAHA.111.240150.
  33. Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011; 13: 423–33. DOI: 10.1038/ncb2210.
  34. Arroyo J.D., Chevillet J.R., Kroh E.M., Ruf I.K., Pritchard C.C., Gibson D.F., ... & Tait J.F. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011; 108: 5003–8. DOI: 10.1073/pnas.1019055108.
  35. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007; 35: 495–516. DOI: 10.1080/01926230701320337.
  36. Kowal J., Arras G., Colombo M., Jouve M., Morath J. P., Primdal-Bengtson B., ... & Théry C.Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 2016; 113: 968–77. DOI: 10.1073/pnas.1521230113.
  37. Zernecke A., Bidzhekov K., Noels H., Shagdarsuren E., Gan L., Denecke B., ... & Wang S. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci. Signal. 2009; 2: 100:ra81-ra81. DOI: 10.1126/scisignal.2000610.
  38. Zhou J., Li J.Y.S., Nguyen P., Wang K.C., Weiss A., Kuo Y.C., ... & Chien S. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ Res. 2013; 113: 40–51. DOI: 10.1161/CIRCRESAHA.113.280883.
  39. Deng L., Blanco F.J., Stevens H., Lu R., Caudrillier A., McBride M.W., ... & Stenmark K. R. MicroRNA-143 activation regulates smooth muscle and endothelial cell crosstalk in pulmonary arterial hypertension. Circ Res. 2015; 117: 870–83. DOI: 10.1161/CIRCRESAHA.115.306806.
  40. Climent M., Quintavalle M., Miragoli M., Chen J., Condorelli G., Elia L. TGF beta triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circ Res. 2015; 116: 1753–64. DOI: 10.1161/CIRCRESAHA.116.305178.
  41. 41. Zhirov I.V., Kochetov A.G., Zaseeva A.V., Lyang O.V., Skvorcov A.A., Abramov A.A., Gimadiev R.R., Masenko V.P., Tereshhenko S.N. MikroRNK v diagnostike hronicheskoy serdechnoy nedostatochnosti: sostoyanie problemy i rezul`taty pilotnogo issledovaniya. Sistemnye gipertenzii. 2016; 1: 39–46. [Zhirov I.V., Kochetov A.G., Zaseeva A.V., Ljang O.V., Skvorcov A.A., Abramov A.A., Gimadiev R.R., Masenko V.P., Tereshhenko S.N. MikroRNK v diagnostike hronicheskoj serdechnoj nedostatochnosti: sostojanie problemy i rezul’taty pilotnogo issledovanija. Sistemnye gipertenzii. 2016; 1: 39–46 (in Russian)]
  42. Khalil A.M., Guttman M., Huarte M., Garber M., Raj A., Morales D.R., ... & Regev A. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009; 106: 11667–72. DOI: 10.1073/pnas.0904715106.
  43. Quinn J.J., Chang H.Y. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016; 17: 47–62. DOI: 10.1038/nrg.2015.10.
  44. Nelson B.R., Makarewich C.A., Anderson D.M., Winders B.R., Troupes C.D., Wu F., ... & Cannon S.C. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science. 2016; 351: 271–5. DOI: 10.1126/science.aad4076.
  45. . Ørom U.A., Derrien T., Beringer M., Gumireddy K., Gardini A., Bussotti G., ... & Guigo R. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010; 143: 46–58. DOI: 10.1016/j.cell.2010.09.001.
  46. . Ng S.Y, Johnson R., Stanton L.W. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 2012; 31: 522–33. DOI: 10.1038/emboj.2011.459.
  47. Zhao J., Sun B.K., Erwin J.A., Song J.J., Lee J.T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science. 2008; 322: 750–6. DOI: 10.1126/science.1163045.
  48. Nagano T., Mitchell J.A., Sanz L.A., Pauler F.M., Ferguson-Smith A.C., Feil R., & Fraser P. The air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 2008; 322: 1717–20. DOI: 10.1126/science.1163802.
  49. Salmena L., Poliseno L., Tay Y., Kats L., Pandolfi P.P. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell. 2011; 146: 353–8. DOI: 10.1016/j.cell.2011.07.014.
  50. Yoon J.H., Abdelmohsen K., Srikantan S., Yang X., Martindale J.L., De S., ... & Gorospe M. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012; 47: 648–55. DOI: 10.1016/j.molcel.2012.06.027.
  51. Jain R.K. Molecular regulation of vessel maturation. Nat Med. 2003; 9: 685–93. DOI: 10.1038/nm0603-685.
  52. Bell R.D., Long X., Lin M., Bergmann J.H., Nanda V., Cowan S.L., ... & Miano J.M. Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol. 2014; 34: 1249–59. DOI: 10.1161/ATVBAHA.114.303240.
  53. Boulberdaa M., Scott E., Ballantyne M., Garcia R., Descamps B., Angelini G.D., ... & Miano J.M. A role for the long noncoding RNA SENCR in commitment and function of endothelial cells. Mol Ther. 2016; 24: 978–90. DOI: 10.1038/mt.2016.41.
  54. Wu G., Cai J., Han Y., Chen J., Huang Z. P., Chen C., ... & Xu Z. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation. 2014; 130: 1452–5. DOI: 10.1161/CIRCULATIONAHA.114.011675.
  55. He C., Ding J.W., Li S., Wu H., Jiang Y.R., Yang W., ... & Yang J. The role of long intergenic noncoding RNA p21 in vascular endothelial cells. DNA Cell Biol. 2015; 34 (11): 677–83. DOI: 10.1089/dna.2015.2966.
  56. Michalik K.M., You X., Manavski Y., Doddaballapur A., Zörnig M., Braun T., ... & Boon R. A. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res. 2014; 114 (9): 1389–97. DOI: 10.1161/CIRCRESAHA.114.303265.
  57. Leung A., Trac C., Jin W., Lanting L., Akbany A., Sætrom P., ... & Natarajan R. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res. 2013; 113: 266–78. DOI: 10.1161/CIRCRESAHA.112.300849.
  58. Ballantyne M.D., Pinel K., Dakin R., Vesey A.T., Diver L., Mackenzie R., ... & Joshi N. Smooth muscle enriched long noncoding RNA (SMILR) regulates cell proliferation. Circulation. 2016; 133: 2050–65. DOI: 10.1161/CIRCULATIONAHA.115.021019.
  59. Vicens Q., Westhof E. Biogenesis of circular RNAs. Cell. 2014; 159: 13–4. DOI: 10.1016/j.cell.2014.09.005.
  60. Ashwal-Fluss R., Meyer M., Pamudurti N.R., Ivanov A., Bartok O., Hanan M., ... & Kadener S. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014; 56 (1): 55–66. DOI: 10.1016/j.molcel.2014.08.019.
  61. Hansen T.B., Jensen T.I., Clausen B.H., Bramsen J.B., Finsen B., Damgaard C.K., & Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013; 495: 384–8. DOI: 10.1038/nature11993.
  62. Zhang Y., Zhang X.O., Chen T., Xiang J.F., Yin Q. F., Xing Y.H., ... & Chen L. L. Circular intronic long noncoding RNAs. Mol Cell. 2013; 51: 792–806. DOI: 10.1016/j.molcel.2013.08.017.
  63. Memczak S., Papavasileiou P., Peters O., Rajewsky N. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One. 2015; 10: e0141214. DOI: 10.1371/journal.pone.0141214.
  64. Boeckel J.N., Jaé N., Heumüller A.W., Chen W., Boon R.A., Stellos K., ... & Dimmeler S. Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res. 2015; 117: 884–90. DOI: 10.1161/CIRCRESAHA.115.306319.
  65. Lovren F., Pan Y., Quan A., Singh K.K., Shukla P.C., Gupta N., ... & Teoh H. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation. 2012; 126: 81–90. DOI: 10.1161/CIRCULATIONAHA.111.084186.
  66. Montgomery R.L., Yu G., Latimer P.A., Stack C., Robinson K., Dalby C.M., ... & van Rooij E. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol. Med. 2014; 6: 1347–56. DOI: 10.15252/emmm.201303604.
  67. Krutzfeldt J., Rajewsky N., Braich R., Rajeev K.G., Tuschl T., Manoharan M., & Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005; 438 (7068): 685–9. DOI: 10.1038/nature04303.
  68. Wheeler T.M., Leger A.J., Pandey S.K., MacLeod A.R., Nakamori M., Cheng S.H., ... & Thornton C.A. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature. 2012; 488 (7409): 111–5. DOI: 10.1038/nature11362.
  69. Lanford R.E., Hildebrandt-Eriksen E.S., Petri A., Persson R., Lindow M., Munk M.E., .. & Ørum H. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science. 2010; 327 (5962): 198–201. DOI: 10.1126/science.1178178.
  70. Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol. 2013; 31: 577. DOI: 10.1038/nbt0713-577.
  71. Gomez I.G., MacKenna D.A., Johnson B.G., Kaimal V., Roach A.M., Ren S., ... & Xia T. H. Anti-microRNA-21 oligonucleotides prevent alport nephropathy progression by stimulating metabolic pathways. J. Clin. Invest. 2015; 125 (1): 141–56. DOI: 10.1172/JCI75852.