POLYMORPHISM OF VEGF-A GENES AND THE RISK OF THE DEVELOPMENT OF THE EXUDATIVE AGE-RELATED MACULAR DEGENERATION

DOI: https://doi.org/10.29296/24999490-2018-05-07

D.A. Sychev, L.K. Moshetova, E.R. Osmanova, K.I. Turkina, E.A. Grishina, K.A. Ryzhikova Russian Medical Academy of Continuous Professional Education, Barrikadnaya str., 2/1, Moscow, 125993, Russian Federation Е-mail: [email protected]

Introduction. Age-related macular degeneration (AMD), in particular, its exudative form, has for many years held a leading position in the causes of the loss of visual acuity and leads to blindness in 90% of elderly cases. The loss of central vision is based on the process of formation of choroneovascularization associated with the activation of angiogenic factors, namely, the main regulator of angiogenesis, the vascular endothelial growth factor-VEGF-A. Fundamental works of recent years indicate the significant role of genetic markers in the etiopathogenesis of age-related macular degeneration. This necessitates the development of diagnostic criteria for the exudative form of age-related macular degeneration through a detailed study of the association between the carriage of VEGF-A gene polymorphism and the risk of the development of an exudative form of age-related macular degeneration. The aim of the study. To investigate the prevalence of the genotype of the allele variant rs699947 of the VEGF-A gene and its association with the risk of the development of an exudative form of age-related macular degeneration. Materials and methods. The 1st group of cases consisted of 55 patients with an exudative form of age-related macular degeneration, the 2nd group included 66 patients without pathological changes in the retina. Results. The distribution of the genotypes of polymorphism rs699947 of the VEGF-A gene in the 1st group appeared to be follows: CA genotype – 57%, CC – 20%, AA – 22%; the frequency of the C-allele is 0,49, the frequency of the A-allele is 0,50%, the Hardy–Weinberg χ2 is of 13,16 (p=0,31); in the second group: SA accounted of – 48%, SS – 21%, AA – 30%. The frequency of the C-allele amounted to 0,45, the frequency of the A-allele – 0,55, and the Hardy–Weinberg χ2 was equal to 7,87 (p=0,36). There were no significant differences (p=0,59) in the prevalence of the C- and A-alleles between the groups. Conclusion. Pathological alleles and genotypes for the polymorphic marker rs699947 of the VEGF-A gene were not detected. Carriage the genetic variants of rs699947 of the VEGF-A gene in age-related macular degeneration patients was not associated significantly with the risk of the development of macular edema. An international experience of the personalization anti-angiogenic therapy in such patients is of interest. The study of the influence of other genetic markers (s3025039) on the development of a moist form of age-related macular degeneration remains to be relevant.
Keywords: 
AMD, VEGF-A, polymorphisms of genes, pharmacogenetics, antiangiogenic therapy, inhibitors of growth factor vascular endothelium

Список литературы: 
  1. Oftal`mologiya. Klinicheskie rekomendacii. Pod red. Moshetovoy L.K., Nesterova A.P., Egorova E.A. M.: GE`OTAR-Media, 2007; 164–88. [Oftal’mologiya. Klinicheskie rekomendatsii. Pod red. Moshetovoi L.K., Nesterova A.P., Egorova E.A. M.: GEOTAR- Media, 2007; 164–88 (in Russian)]
  2. Claessen H., Genz J., Bertram B., Trautner C., Giani G., Zöllner I., Icks A. Evidence for a considerable decrease in total and cause-specific incidencesof blindness in Germany. Eur. J. Epidemiol. 2012; 27 (7): 519–24.
  3. Ishibashi T., Hata Y., Yoshikawa H., Nakagawa K., Sueishi K., Inomata H. Exspression of vascular endothelial growth factor in experimental choroidal neovascularization. Graefes Arch Clin. Exp. Ophthalmol. 1997; 235: 159–67.
  4. Siemerink M.J., Augustin A.J., Schlingemann R.O. Mechanisms of ocular angiogenesis and its molecular mediators. Dev Ophthalmology. 2010; 46: 4–20.
  5. Ferrara N. Vascular endothelial growth factor. Arteriosclerosis, Thrombosis, and Vascular Biology. 2009; 29 (6): 789–91.
  6. Ribatti D. The discovery of angiogenic growth factors: the contribution of Italian scientists. Vascular Cell. 2014; 6: 8. DOI: 10.1186/2045-824x-6-8.
  7. Salafutdinov I.I., Shafigullina A.K., Yalvach M.E`. Kudryashova N.V., Lagar`kova M.A., Shutova M.V., Kiselev S.P., Masgutov R.F., Zhdanov R.I., Kiyasov A.L., Islamov P.P., Rizvanov A.A. E`ffekt odnovremennoy e`kspressii razlichnyh izoform faktora rosta e`ndoteliya sosudov VEGF i osnovnogo faktora rosta fibroblastov FGF2 na proliferaciyu e`ndotelial`nyh kletok pupochnoy veny. Kletochnaya transplantologiya i tkanevaya inzheneriya. 2010; 2: 62–7. [Salafutdinov I.I., Shafigullina A.K., Yalvach M.E., Kudryashova N.V., Lagar’kova M.A., Shutova M.V., Kiselev S.P., Masgutov R.F., Zhdanov R.I., Kiyasov A.L., Islamov P.P., Rizvanov A.A. Effect of simultaneous expression of various usoforms of vascular endothelial growth factor VEGF and fibroblast growth factor FGF2 on proliferation of human umbilical cord blood cells HUVEC. Kletochnaya transplantologiya i tkanevaya inzheneriya. 2010;2: 62–7 (in Russian)]
  8. Zaharova N.B., Durnov D.A., Mihaylov V.Yu., Ponukalin A.N., Nikitina V.V., Zankina O.V., Leonova M.L. Diagnosticheskoe znachenie issledovaniya faktora rosta e`ndoteliya sosudov v syvorotke krovi. Fundamental`nye issledovaniya. 2011; 11 (1): 215–20. [Zakharova N.B., Durnov D.A., Mikhailov V.Y., Ponukalin A.N., Nikitina V.V., Zankina O.V., Leonova M.L. Diagnostic value of study vascular endothelial growth factor in serum. Fundamental’nye issledovaniya. 2011; 11 (1): 215–20 (in Russian)]
  9. ArboledaVelasquez J.F., D’Amore P.A. Vasculogenesis and angiogenesis. Cellular and Molecular Pathobiology of Cardiovascular Disease. 2014; 10: 181–96.
  10. Belousov Yu.B., Egorov E.A., Romanenko I.A. Farmakoe`konomicheskaya ocenka primeneniya lekarstvennogo preparata Lucentis (ranibizumab) pri vlazhnoy forme vozrastnoy makulyarnoy degeneracii v medicinskoy i social`noy perspektivah v usloviyah RF. Klinicheskaya Oftal`mologiya. 2010; 11 (2): 61–4. [Belousov Yu.B. Egorov E.A. Romanenko I.A. Pharmacoeconomic evaluation of Lucentis (ranibizumab) usage in patients with wet type of age–related macular degeneration in medical and social perspective in Russian Federation. Klinicheskaya Oftal’mologiya. 2010; 11 (2): 61–4 (in Russian)]
  11. Kukes V.G., Sychev D.A., Ramenskaya G.V., Ignat`ev I.V. Klinicheskaya farmakogenetika. M.: GE`OTAR-Media, 2007. [Kukes V.G., Sychev D.A., Ramenskaya G.V., Ignat’ev I.V. Klinicheskaya farmakogenetika. M.: GEOTAR- Media, 2007 (in Russian)]
  12. Lazzeri S., Figus M., Orlandi P., Fioravanti A., Di Desidero T., Agosta E., Sartini M.S., Posarelli C., Nardi M., Danesi R., Bocci G. VEGF-A polymorphisms predict short-term functional response to intravitreal ranibizumab in exudative age-related macular degeneration. Pharmacogenomics. 2013; 14 (6): 623–30.
  13. Hautamäki A., Kivioja J., Vavuli S., Kakko S., Savolainen E.R., Savolainen M.J., Liinamaa M.J., Seitsonen S., Onkamo P., Järvelä I., Immonen I. Interleukin 8 promoter polymorphism predicts the initial response to bevacizumab treatment for exudative age-related macular degeneration. Retina. 2013; 33 (9): 1815–27.
  14. Park U.C., Shin J.Y., Kim S.J., Shin E.S., Lee J.E., McCarthy L.C., Newcombe P.J., Xu C.F., Chung H., Yu H.G. Genetic factors associated with response to intravitreal ranibizumab in Korean patients with neovascular age-related macular degeneration. Retina. 2014; 34 (2): 288–97.