DOI: https://doi.org/10.29296/24999490-2019-01-01

N.E. Kushlinskii(1), M.V. Fridman(2), A.A. Morozov(3), A.I. Chertkova(1), E.S. Gershtein(1), Z.G. Kadagidze(1) 1-N.N. Blokhin National Medical Research Center of Oncology, Kashirskoye shosse, 24, Moscow, 115478, Russian Federation; 2-N.I. Vavilov Institute of General Genetics, Gubkina Str., 3, Moscow, 117971, Russian Federation; 3-M.F. Vladimirsky Moscow Regional Research and Clinical Institute, Shchepkina Str., 61/2, b. 1, Moscow, 129110, Russian Federation E-mail: biochimia@yandex.ru

The review is devoted to the studies of immune check-point (programmed death) molecules – PD-1 receptor and its ligands PD-L1 and PD-L2, which play an important role in the regulation of immune response. Special attention is paid to soluble (s) forms of PD-1 and PD-L1 that compete with the membrane forms of these molecules. The exact role of these soluble molecules in the immune response has not been studied sufficiently. The importance of sPD-1 and sPD-L1 studies in various malignant tumors, their potential role in the diagnostics, disease prognosis, assessment of the efficiency of immunotherapy, and their potential implications as immune response modulating drugs are discussed. The data on the value of sPD-L1 and sPD-1 in various pathologies are shown to be still few and controversial. However, several independent investigations have demonstrated an increased level of sPD-L1 in peripheral blood of non-small cell lung cancer patients as compared to control, and negative prognostic value of high sPD-L1 level in relation to patients’ overall survival was revealed. Studies of soluble forms of PD-1 and PD-L1 in other nosologic forms of tumors require further thorough investigation.
cancer, membrane-bound PD-1, membrane-bound PD-L1, soluble PD-1, soluble PD-L1

Список литературы: 
  1. Grünwald V. Checkpoint Blockade – a New Treatment Paradigm in Renal Cell Carcinoma. Oncol. Res. Treat. 2016; 39 (6): 353–8.
  2. Schmidinger M. Clinical decision-making for immunotherapy in metastatic renal cell carcinoma. Curr. Opin. Urol. 2018; 28 (1): 29–34.
  3. Lee J.Y., Lee H.T., Shin W., Chae J., Choi J., Kim S.H., Lim H., T.W., Park K.Y., Lee Y.Ji, Ryu S.E., Son Ji Y., Lee J.U., Heo Y.-S. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat. Commun. 2016; 7: 13354. Published online 2016 Oct 31.
  4. Koshkin V.S., Rini B.I. Emerging therapeutics in refractory renal cell carcinoma. Expert Opin. Pharmacother. 2016; 17 (9): 1225–32.
  5. Mataraza J.M., Gotwals P. Recent advances in immuno-oncology and its application to urological cancers. BJU Int. 2016; 118 (4): 506–14.
  6. Kushlinskiy N.E., Fridman M.V., Morozov A.A., Gershteyn E.S., Kadagidze Z.G., Matveev V.B. Covremennye podhody k immunoterapii raka pochki. Onkourologiya. 2018; 14 (2): 54–67. [Kushlinskii N.E., Fridman M.V., Morozov A.A., Gershtein E.S., Kadagidze Z.G., Matveev V.B. Modern approaches to kidney cancer immunotherapy. Cancer Urology. 2018; 14 (2): 54–67 (in Russian)]
  7. Dong Y., Sun Q., Zhang X. PD-1 and its ligands are important immune checkpoints in cancer. Oncotarget. 2017;8(2):2171-2186.
  8. Riella L.V., Paterson A.M., Sharpe A.H., Chandraker A. Role of the PD-1 pathway in the immune response. Am. J. Transplant. 2012; 12 (10): 2575–87.
  9. Zhu X., Lang J. Soluble PD-1 and PD-L1: predictive and prognostic significance in cancer. Oncotarget. 2017; 8 (57): 97671–82. https://doi.org/10.18632/oncotarget.18311.
  10. Erlmeier F., Weichert W., Schrader A.J., Autenrieth M., Hartmann A., Steffens S., Ivanyi P. Prognostic impact of PD-1 and its ligands in renal cell carcinoma. Med. Oncol. 2017; 34 (6): 99.
  11. Shin S.J., Jeon Y.K., Kim P.J., Cho Y.M., Koh J., Chung D.H., Go H. Clinicopathologic Analysis of PD-L1 and PD-L2 Expression in Renal Cell Carcinoma: Association with Oncogenic Proteins Status. Ann. Sur. Oncol. 2016; 23 (2): 694–702.
  12. Wang Q., Liu F., Liu L. Prognostic significance of PD-L1 in solid tumor: An updated meta-analysis. Medicine (Baltimore). 2017; 96 (18): e6369.
  13. Kammerer-Jacquet S.F., Crouzet L., Brunot A., Dagher J., Pladys A., Edeline J., Laguerre B., Peyronnet B., Mathieu R., Verhoest G., Patard J.J., Lespagnol A., Mosser J., Denis M., Messai Y., Gad-Lapiteau S., Chouaib S., Belaud-Rotureau M.A., Bensalah K., Rioux-Leclercq N. Independent association of PD-L1 expression with noninactivated VHL clear cell renal cell carcinoma-A finding with therapeutic potential. Int. J. Cancer. 2017a; 140 (1): 142–8.
  14. Kammerer-Jacquet S.F., Medane S., Bensalah K., Bernhard J.C., Yacoub M., Dupuis F., Ravaud A., Verhoest G., Mathieu R., Peyronnet B., Brunot A., Laguerre B., Lespagnol A., Mosser J., Dugay F., Belaud-Rotureau M.A., Rioux-Leclercq N. Correlation of c-MET Expression with PD-L1 Expression in Metastatic Clear Cell Renal Cell Carcinoma Treated by Sunitinib First-Line Therapy. Target Oncol. 2017b; 12 (4): 487–94.
  15. Ning X.H., Gong Y.Q., He S.M., Li T., Wang J.Y., Peng S.H., Chen J.C., Liu J.Y., Qi N.N., Guo Y.L., Gong K. Higher programmed cell death 1 ligand 1 (PD-L1) mRNA level in clear cell renal cell carcinomas is associated with a favorable outcome due to the active immune responses in tumor tissues. Oncotarget. 2017; 8 (2): 3355–63. https://doi.org/10.18632/oncotarget.13765.
  16. McDermott D.F., Sosman J.A., Sznol M., Massard C., Gordon M.S., Hamid O., Powderly J.D., Infante J.R., Fassò M., Wang Y.V., Zou W., Hegde P.S., Fine G.D., Powles T. Atezolizumab, an Anti-Programmed Death-Ligand 1 Antibody, in Metastatic Renal Cell Carcinoma: Long-Term Safety, Clinical Activity, and Immune Correlates From a Phase Ia Study. J. Clin. Oncol. 2016; 34 (8): 833–42.
  17. Motzer R.J., Escudier B., McDermott D.F., George S., Hammers H.J., Srinivas S., Tykodi S.S., Sosman J.A., Procopio G., Plimack E.R., Castellano D., Choueiri T.K., Gurney H., Donskov F., Bono P., Wagstaff J., Gauler T.C., Ueda T., Tomita Y., Schutz F.A., Kollmannsberger C., Larkin J., Ravaud A., Simon J.S., Xu L.A., Waxman I.M., Sharma P. CheckMate 025 Investigators. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015; 373 (19): 1803–13.
  18. Kuusk T., Albiges L., Escudier B., Grivas N., Haanen J., Powles T., Bex A. Antiangiogenic therapy combined with immune checkpoint blockade in renal cancer. Angiogenesis. 2017; 20 (2): 205–15.
  19. Liu K.G., Gupta S., Goel S. Immunotherapy: incorporation in the evolving paradigm of renal cancer management and future prospects. Oncotarget. 2017; 8 (10): 17313–27.
  20. Bracarda S., Porta C., Boni C., Santoro A., Mucciarini C., Pazzola A., Cortesi E., Gasparro D., Labianca R., Di Costanzo F., Falcone A., Cinquini M., Caserta C., Paglino C., De Angelis V. Could interferon still play a role in metastatic renal cell carcinoma? A randomized study of two schedules of sorafenib plus interferon-alpha 2a (RAPSODY). Eur. Urol. 2013; 63 (2): 254–61.
  21. Eto M., Kawano Y., Hirao Y., Mita K., Arai Y., Tsukamoto T., Hashine K., Matsubara A., Fujioka T., Kimura G., Shinohara N., Tatsugami K., Hinotsu S., Naito S. Japan RCC Trialist Collaborative Group (JRTCG) investigators. Phase II clinical trial of sorafenib plus interferon-alpha treatment for patients with metastatic renal cell carcinoma in Japan. BMC Cancer. 2015; 15: 667.
  22. Négrier S., Gravis G., Pérol D., Chevreau C., Delva R., Bay J.O., Blanc E., Ferlay C., Geoffrois L., Rolland F., Legouffe E., Sevin E., Laguerre B., Escudier B. Temsirolimus and bevacizumab, or sunitinib, or interferon alfa and bevacizumab for patients with advanced renal cell carcinoma (TORAVA): a randomised phase 2 trial. Lancet Oncol. 2011; 12 (7): 673–80.
  23. Nukui A., Masuda A., Abe H., Arai K., Yoshida K.I., Kamai T. Increased serum level of soluble interleukin-2 receptor is associated with a worse response of metastatic clear cell renal cell carcinoma to interferon alpha and sequential VEGF-targeting therapy. BMC Cancer. 2017; 17 (1): 372.
  24. Yuasa T., Masuda H., Yamamoto S., Numao N., Yonese J. Biomarkers to predict prognosis and response to checkpoint inhibitors. Int. J. Clin. Oncol. 2017; 4: 629–34.
  25. Topalian S.L., Taube J.M., Anders R.A., Pardol D.M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer. 2016; 16 (5): 275–87.
  26. Hofmann L., Forschner A., Loquai C., Goldinger S.M., Zimmer L., Ugurel S., Schmidgen M.I., Gutzmer R., Utikal J.S., Göppner D., Hassel J.C., Meier F., Tietze J.K., Thomas I., Weishaupt C., Leverkus M., Wahl R., Dietrich U., Garbe C., Kirchberger M.C., Eigentler T., Berking C., Gesierich A., Krackhardt A.M., Schadendorf D., Schuler G., Dummer R., Heinzerling L.M. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur. J. Cancer. 2016; 60: 190–209.
  27. Ariyasu R., Horiike A., Yoshizawa T., Dotsu Y., Koyama J., Saiki M., Sonoda T., Nishikawa S., Kitazono S., Yanagitani N., Nishio M. Adrenal Insufficiency Related to Anti-Programmed Death-1 Therapy. Anticancer Res. 2017; 37 (8): 4229–32.
  28. Kao J.C., Liao B., Markovic S.N., Klein C.J., Naddaf E., Staff N.P., Liewluck T., Hammack J.E., Sandroni P., Finnes H., Mauermann M.L. Neurological Complications Associated With Anti–Programmed Death 1 (PD-1) Antibodies. JAMA Neurol. 2017; 74 (10): 1216–22.
  29. Naidoo J., Wang X., Woo K.M., Iyriboz T., Halpenny D., Cunningham J., Chaft J.E., Segal N.H., Callahan M.K., Lesokhin A.M., Rosenberg J., Voss M.H., Rudin C.M., Rizvi H., Hou X., Rodriguez K., Albano M., Gordon R.A., Leduc C., Rekhtman N., Harris B., Menzies A.M., Guminski A.D., Carlino M.S., Kong B.Y., Wolchok J.D., Postow M.A., Long G.V., Hellmann M.D. Pneumonitis in Patients Treated With Anti-Programmed Death-1/Programmed Death Ligand 1 Therapy. J. Clin. Oncol. 2017; 35 (7): 709–17.
  30. Ishida Y., Agata Y., Shibahara K., Honjo T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992; 11 (11): 3887–95.
  31. Shinohara T., Taniwaki M., Ishida Y., Kawaichi M., Honjo T. Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics. 1994; 23 (3): 704–6.
  32. Dong H., Zhu G., Tamada K., Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 1999; 5 (12): 1365–9.
  33. Latchman Y., Wood C.R., Chernova T., Chaudhary D., Borde M., Chernova I., Iwai Y., Long A.J., Brown J.A., Nunes R., Greenfield E.A., Bourque K., Boussiotis V.A., Carter L.L., Carreno B.M., Malenkovich N., Nishimura H., Okazaki T., Honjo T., Sharpe A.H., Freeman G.J. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2001; 2 (3): 261–8.
  34. Nielsen C., Ohm-Laursen L., Barington T., Husby S., Lillevang S.T. Alternative splice variants of the human PD-1 gene. Cell Immunol. 2005; 235 (2): 109–16.
  35. Wan B., Nie H., Liu A., Feng G., He D., Xu R., Zhang Q., Dong C., Zhang J.Z. Aberrant regulation of synovial T cell activation by soluble costimulatory molecules in rheumatoid arthritis. J. Immunol. 2006; 177 (12): 8844–50.
  36. Lipson E.J., Forde P.M., Hammers H.J., Emens L.A., Taube J.M., Topalian S.L. Antagonists of PD-1 and PD-L1 in Cancer Treatment. Semin. Oncol. 2015; 42 (4): 587–600.
  37. He L., Zhang G., He Y., Zhu H., Zhang H., Feng Z. Blockade of B7-H1 with sPD-1 improves immunity against murine hepatocarcinoma. Anticancer Res. 2005; 25 (5): 3309–13.
  38. Chen Z., Hu K., Feng L., Su R., Lai N., Yang Z., Kang S. Senescent cells re-engineered to express soluble programmed death receptor-1 for inhibiting programmed death receptor-1/programmed death ligand-1 as a vaccination approach against breast cancer. Cancer Sci. 2018; 109 (6): 1753–63. https://doi.org/10.1111/cas.13618.
  39. Song M.Y., Park S.H., Nam H.J., Choi D.H., Sung Y.C. Enhancement of vaccine-induced primary and memory CD8(+) T-cell responses by soluble PD-1. J. Immunother. 2011; 34 (3): 297–306.
  40. Geng H., Zhang G.M., Xiao H., Yuan Y., Li D., Zhang H., Qiu H., He Y.F., Feng Z.H. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int. J. Cancer. 2006; 118 (11): 2657–64.
  41. Yao S., Chen L. PD-1 as an immune modulatory receptor. Cancer J. 2014; 20 (4): 262–4.
  42. Ciccarese C., Di Nunno V., Iacovelli R., Massari F. Future perspectives for personalized immunotherapy in renal cell carcinoma. Expert. Opin. Biol. Ther. 2017; 17 (9): 1049–52.
  43. Zhang Y., Zhu W., Zhang X., Qu Q., Zhang L. Expression and clinical significance of programmed death-1 on lymphocytes and programmed death ligand-1 on monocytes in the peripheral blood of patients with cervical cancer. Oncol. Lett. 2017; 14 (6): 7225–31. https://doi.org/10.3892/ol.2017.7105.
  44. Chen Y., Wang Q., Shi B., Xu P., Hu Z., Bai L., Zhang X. Development of a sandwich ELISA for evaluating soluble PD-L1 (CD274) in human sera of different ages as well as supernatants of PD-L1+ cell lines. Cytokine. 2011; 56 (2): 231–8.
  45. He X.H., Xu L.H., Liu Y. Identification of a novel splice variant of human PD-L1 mRNA encoding an isoform-lacking Igv-like domain. Acta Pharmacol. Sin. 2005; 26 (4): 462–8.
  46. Frigola X., Inman B.A., Lohse C.M., Krco C.J., Cheville J.C., Thompson R.H., Leibovich B., Blute M.L., Dong H., Kwon E.D. Identification of a soluble form of B7-H1 that retains immunosuppressive activity and is associated with aggressive renal cell carcinoma. Clin. Cancer Res. 2011; 17 (7): 1915–23.
  47. Frigola X., Inman B.A., Krco C.J., Liu X., Harrington S.M., Bulur P.A., Dietz A.B., Dong H., Kwon E.D. Soluble B7-H1: differences in production between dendritic cells and T cells. Immunol. Lett. 2012; 142 (1–2): 78–82.
  48. Shi M.H., Xing Y.F., Zhang Z.L., Huang J.A., Chen Y.J. Effect of soluble PD-L1 released by lung cancer cells in regulating the function of T lymphocytes. Zhonghua Zhong Liu Za Zhi. 2013; 35 (2): 85–8.
  49. Takahashi N., Iwasa S., Sasaki Y., Shoji H., Honma Y., Takashima A., Okita N.T., Kato K., Hamaguchi T., Yamada Y. Serum levels of soluble programmed cell death ligand 1 as a prognostic factor on the first-line treatment of metastatic or recurrent gastric cancer. J. Cancer Res. Clin. Oncol. 2016; 142 (8): 1727–38.
  50. Ruf M., Moch H., Schraml P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int. J. Cancer. 2016; 139 (2): 396–403.
  51. Rossille D., Gressier M., Damotte D., Maucort-Boulch D., Pangault C., Semana G., Le Gouill S., Haioun C., Tarte K., Lamy T., Milpied N., Fest T., Damaj G. et al., and Groupe Ouest-Est des Leucémies et Autres Maladies du Sang, and Groupe Ouest-Est des Leucémies et Autres Maladies du Sang. High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-Cell lymphoma: results from a French multicenter clinical trial. Leukemia. 2014; 28 (12): 2367–75.
  52. Dai S., Jia R., Zhang X., Fang Q., Huang L. The PD-1/PD-Ls pathway and autoimmune diseases. Cell Immunol. 2014; 290 (1): 72–9.
  53. Zhou J., Mahoney K.M., Giobbie-Hurder A., Zhao F., Lee S., Liao X., Rodig S., Li J., Wu X., Butterfield L.H., Piesche M., Manos M.P., Eastman L.M., Dranoff G., Freeman G.J., Hodi F.S. Soluble PD-L1 as a Biomarker in Malignant Melanoma Treated with Checkpoint Blockade. Cancer Immunol. Res. 2017; 5 (6): 480–92. https://doi.org/10.1158/2326-6066.CIR-16-0329.
  54. Takeuchi M., Doi T., Obayashi K., Hirai A., Yoneda K., Tanaka F., Iwai Y. Soluble PD-L1 with PD-1-binding capacity exists in the plasma of patients with non-small cell lung cancer. Immunol. Lett. 2018; 196: 155–60. https://doi.org/10.1016/j.imlet.2018.01.007.
  55. Theodoraki M.N., Yerneni S.S., Hoffmann T.K., Gooding W.E., Whiteside T.L. Clinical Significance of PD-L1+ Exosomes in Plasma of Head and Neck Cancer Patients. Clin. Cancer Res. 2018; 24 (4): 896–905. https://doi.org/10.1158/1078-0432.CCR-17-2664.
  56. Sorensen S.F., Demuth C., Weber B., Sorensen B.S., Meldgaard P. Increase in soluble PD-1 is associated with prolonged survival in patients with advanced EGFR-mutated non-small cell lung cancer treated with erlotinib. Lung Cancer. 2016; 100: 77–84.
  57. Zhang P., Ouyang S., Wang J., Huang Z., Wang J., Liao L. Levels of programmed death-1 and programmed death ligand-1 in the peripheral blood of patients with oral squamous cell carcinoma and its clinical implications. Hua Xi Kou Qiang Yi Xue Za Zhi. 2015; 33 (5): 529–33.
  58. Cheng H.Y., Kang P.J., Chuang Y.H., Wang Y.H., Jan M.C., Wu C.F., Lin C.L., Liu C.J., Liaw Y.F., Lin S.M., Chen P.J., Lee S.D., Yu M.W. Circulating programmed death-1 as a marker for sustained high hepatitis B viral load and risk of hepatocellular carcinoma. PLoS One. 2014; 9 (11): 95870. https://doi.org/10.1371/journal.pone.0095870.
  59. Li N., Zhou Z., Li F., Sang J., Han Q., Lv Y., Zhao W., Li C., Liu Z. Circulating soluble programmed death-1 levels may differentiate immune-tolerant phase from other phases and hepatocellular carcinoma from other clinical diseases in chronic hepatitis B virus infection. Oncotarget. 2017; 8 (28): 46020–33. https://doi.org/10.18632/oncotarget.17546.
  60. Kruger S., Legenstein M.L., Rösgen V., Haas M., Modest D.P., Westphalen C.B., Ormanns S., Kirchner T., Heinemann V., Holdenrieder S., Boeck S. Serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed deathligand 1 (sPD-L1) in advanced pancreatic cancer. Oncoimmunology. 2017; 6 (5): e1310358. https://doi.org/10.1080/2162402X.2017.1310358.
  61. Zhang J., Gao J., Li Y., Nie J., Dai L., Hu W., Chen X., Han J., Ma X., Tian G., Wu D., Shen L., Fang J. Circulating PD-L1 in NSCLC patients and the correlation between the level of PD-L1 expression and the clinical characteristics. Thorac. Cancer. 2015; 6 (4): 534–8. https://doi.org/10.1111/1759-7714.12247.
  62. Cheng S., Zheng J., Zhu J., Xie C., Zhang X., Han X., Song B., Ma Y., Liu J. PD-L1 gene polymorphism and high level of plasma soluble PD-L1 protein may be associated with non-small cell lung cancer. Int. J. Biol. Markers. 2015; 30 (4): 364–8.
  63. Okuma Y., Hosomi Y., Nakahara Y., Watanabe K., Sagawa Y., Homma S. High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer. Lung Cancer. 2017; 104: 1–6.
  64. Zhao J., Zhang P., Wang J., Xi Q., Zhao X., Ji M., Hu G. Plasma levels of soluble programmed death ligand-1 may be associated with overall survival in nonsmall cell lung cancer patients receiving thoracic radiotherapy. Medicine (Baltimore). 2017; 96 (7): e6102. https://doi.org/10.1097/MD.0000000000006102.
  65. Nagato T., Ohkuri T., Ohara K., Hirata Y., Kishibe K., Komabayashi Y., Ueda S., Takahara M., Kumai T., Ishibashi K., Kosaka A., Aoki N., Oikawa K., Uno Y., Akiyama N., Sado M., Takei H., Celis E., Harabuchi Y., Kobayashi H. Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: a potential rationale for immunotherapy. Cancer Immunol. Immunother. 2017; 66 (7): 877–90.
  66. Huang S.Y., Lin H.H., Lin C.W., Li C.C., Yao M., Tang J.L., Hou H.A., Tsay W., Chou S.J., Cheng C.L., Tien H.F. Soluble PD-L1: A biomarker to predict progression of autologous transplantation in patients with multiple myeloma. Oncotarget. 2016; 7 (38): 62490–502. https://doi.org/10.18632/ oncotarget.11519.
  67. Zheng Z., Bu Z., Liu X., Zhang L., Li Z., Wu A., Wu X., Cheng X., Xing X., Du H., Wang X., Hu Y., Ji J. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chin. J. Cancer. Res. 2014; 26 (1): 104–11.