E.I. Surkova(1), O.S. Chumakova(2, 3), A.G. Nikitin(3), A.N. Toropovskiy(1) 1-«TestGene» LLC, 44th Inzhenerny proezd, 9, Ulyanovsk, 432072, Russian Federation; 2-Central State Medical Academy of Department of Presidential Affairs, Marshala Timoshenko str., 19, bld. 1A, Moscow, 121359, Russian Federation; 3-Federal Research clinical Center for specialized types of health care and medical technologies of Federal Medical and Biology Agency, Orekhovy boulevard, 28, Moscow, 115682, Russian Federation E-mail:

Cardiomyopathies are diseases that affect the heart muscle. They are characterized by myocardial dysfunction in the absence or low severity of common cardiovascular diseases, such as coronary atherosclerosis, hypertension, valvular heart diseases. Cardiomyopathies are an extremely heterogeneous group of diseases, both hereditary and acquired, that causes difficulties in establishing an accurate diagnosis. To date, it is already clear that the precise definition of the etiology of cardiomyopathy makes it possible to evaluate the patient's prognosis and apply individual therapy. Therapy can vary widely, for example, for a hereditary or acquired form of morphologically similar myocardial change. At present, a large number of genetic changes leading to the development of pathological modification in the myocardium is known. The most effective and widely used method of genetic testing of inherited cardiomyopathies in the last 10 years is next-generation sequencing (NGS). The widespread use of NGS has led to a better understanding of the causes and heterogeneity of the cardiomyopathy. This review presents data on the most common genetic causes and role of discovered mutations for the pathogenesis of several types of inherited cardiomyopathies: hypertrophic, dilated, arrhythmogenic, restrictive and left ventricular non-compaction. An analysis of literature on the prevalence of certain genetic changes in the Russian population was made. Also, we compare various approaches (whole genome, whole exome, and target sequencing) to genetic testing of this subgroup of diseases. The importance of genetic testing of patients with cardiomyopathy and their relatives is underlined.
cardiomyopathy, NGS, genetic testing

Список литературы: 
  1. Elliott P., Andersson B., Arbustini E., Bilinska Z., Cecchi F., Charron P., Dubourg O., Kühl U., Maisch B., McKenna W.J., Monserrat L., Pankuweit S., Rapezzi C., Seferovic P., Tavazzi L., Keren A. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J. 2008; 29 (2): 270–6.
  2. Goluhova E.Z., Shomahov R.A. Nekoronarogennye porazheniya miokarda. Kreativnaya kardiologiya. 2013; 1: 35–45.
  3. [Golukhova E.Z., Shomakhov R.A. Nekoronarogennye porazheniya miokarda. Kreativnaya kardiologiya. 2013; 1: 35–45 (in Russian)]
  4. Millar L., Sharma S. Diagnosis and management of inherited cardiomyopathies. Practitioner. 2014; 258 (1775): 21–25, 2–3.
  5. Biswas A., Rao V.R., Seth S., Maulik S.K. Next generation sequencing in cardiomyopathy: towards personalized genomics and medicine. Mol Biol Rep. 2014; 41 (8): 4881–8.
  6. Carmichael N., Tsipis J., Windmueller G., Mandel L., Estrella E. «Is it going to hurt?»: the impact of the diagnostic odyssey on children and their families. J. Genet Couns. 2015; 24 (2): 325–35.
  7. Forleo C., D’Erchia A.M., Sorrentino S., Manzari C., Chiara M., Iacoviello M., Guaricci A.I., De Santis D., Musci R.L., La Spada A., Marangelli V., Pesole G., Favale S. Targeted next-generation sequencing detects novel gene-phenotype associations and expands the mutational spectrum in cardiomyopathies. PLoS One. 2017; 12 (7): e0181842.
  8. Mademont-Soler I., Mates J., Yotti R., Espinosa M.A., Pérez-Serra A., Fernandez-Avila A.I., Coll M., Méndez I., Iglesias A., Del Olmo B., Riuró H., Cuenca S., Allegue C., Campuzano O., Picó F., Ferrer-Costa C., Álvarez P., Castillo S., Garcia-Pavia P., Gonzalez-Lopez E., Padron-Barthe L., Diaz de Bustamante A., Darnaude M.T., González-Hevia J.I., Brugada J., Fernandez-Aviles F., Brugada R. Additional value of screening for minor genes and copy number variants in hypertrophic cardiomyopathy. PLoS One. 2017; 12 (8): e0181465.
  9. Bagnall R.D., Ingles J., Dinger M.E., Cowley M.J., Ross S.B., Minoche A.E., Lal S., Turner C., Colley A., Rajagopalan S., Berman Y., Ronan A., Fatkin D., Semsarian C. Whole Genome Sequencing Improves Outcomes of Genetic Testing in Patients With Hypertrophic Cardiomyopathy. J. Am. Coll Cardiol. 2018; 72 (4): 419–29.
  10. Minoche A.E., Horvat C., Johnson R., Gayevskiy V., Morton S.U., Drew A.P., Woo K., Statham A.L., Lundie B., Bagnall R.D., Ingles J., Semsarian C., Seidman J.G., Seidman C.E., Dinger M.E., Cowley M.J., Fatkin D. Genome sequencing as a first-line genetic test in familial dilated cardiomyopathy. Genet Med. 2018.
  11. Simpson S., Rutland P., Rutland C.S. Genomic Insights into Cardiomyopathies: A Comparative Cross-Species Review. Vet Sci. 2017; 4 (1): 19.
  12. Bowles N.E., Bowles K.R., Towbin J.A. The “final common pathway” hypothesis and inherited cardiovascular disease. The role of cytoskeletal proteins in dilated cardiomyopathy. Herz. 2000; 25: 168–75.
  13. Towbin J.A. Inherited cardiomyopathies. Circ J. 2014; 78 (10): 2347–56.
  14. Geisterfer-Lowrance A.A., Kass S., Tanigawa G., Vosberg H.P., McKenna W., Seidman C.E., Seidman J.G. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell. 1990; 62 (5): 999–1006.
  15. Fiorillo C., Astrea G., Savarese M., Cassandrini D., Brisca G., Trucco F., Pedemonte M., Trovato R., Ruggiero L., Vercelli L., D’Amico A., Tasca G., Pane M., Fanin M., Bello L., Broda P., Musumeci O., Rodolico C., Messina S., Vita G.L., Sframeli M., Gibertini S., Morandi L., Mora M., Maggi L., Petrucci A., Massa R., Grandis M., Toscano A., Pegoraro E., Mercuri E., Bertini E., Mongini T., Santoro L., Nigro V., Minetti C., Santorelli F.M., Bruno C. MYH7-related myopathies: clinical, histopathological and imaging findings in a cohort of Italian patients. Orphanet J. Rare Dis. 2016; 11 (1): 91.
  16. Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., Voelkerding K., Rehm H.L.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensusrecommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17 (5): 405–24.
  17. Ryzhkova O.P., Kardymon O.L., Prohorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., Afanas`ev A.A., Zaklyaz`minskaya E.V., Kostareva A.A., Pavlov A.E., Golubenko M.V., Polyakov A.V., Kucev S.I. Rukovodstvo po interpretacii dannyh, poluchennyh metodami massovogo parallel`nogo sekvenirovaniya (MPS). Medicinskaya genetika. 2017; 16 (7): 4–17. [Ryzhkova O.P., Kardymon O.L., Prokhorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., Afanas’ev A.A., Zaklyaz’minskaya E.V., Kostareva A.A., Pavlov A.E., Golubenko M.V., Polyakov A.V., Kutsev S.I. Rukovodstvo po interpretatsii dannykh, poluchennykh metodami massovogo parallel’nogo sekvenirovaniya (MPS). Meditsinskaya genetika. 2017; 16 (7): 4–17 (in Russian)]
  18. Konno T., Chang S., Seidman J.G., Seidman C.E. Genetics of hypertrophic cardiomyopathy. Curr Opin Cardiol. 2010; 25 (3): 205–9.
  19. Xu T., Yang Z., Vatta M., Rampazzo A., Beffagna G., Pilichou K., Scherer S.E., Saffitz J., Kravitz J., Zareba W., Danieli G.A., Lorenzon A., Nava A., Bauce B., Thiene G., Basso C., Calkins H., Gear K., Marcus F., Towbin J.A.; Multidisciplinary Study of Right Ventricular Dysplasia Investigators. Compound and digenic heterozygosity contributes to arrhythmogenic right ventricular cardiomyopathy. J. Am. Coll Cardiol. 2010; 55 (6): 587–97.
  20. Roma-Rodrigues C., Fernandes A.R. Genetics of hypertrophic cardiomyopathy: advances and pitfalls in molecular diagnosis and therapy. Appl Clin Genet. 2014; 7: 195–208.
  21. Polyak M.E., Hovalyg A.B., Bukaeva A.A., Dzemeshkevich S.L., Zaklyaz`minskaya E.V. Spektr mutaciy v gene MYBCP3 u pacientov s gipertroficheskoy kardiomiopatiey. Medicinskaya genetika. 2016; 8: 26–9.
  22. [Polyak M.E., Khovalyg A.B., Bukaeva A.A., Dzemeshkevich S.L., Zaklyaz’minskaya E.V. Spektr mutatsiy v gene MYBCP3 u patsientov s gipertroficheskoy kardiomiopatiey. Meditsinskaya genetika. 2016; 8: 26–9 (in Russian)]
  23. Magi S., Lariccia V., Maiolino M., Amoroso S., Gratteri S. Sudden cardiac death: focus on the genetics of channelopathies and cardiomyopathies. J Biomed Sci. 2017; 24 (1): 56.
  24. Mendes de Almeida R., Tavares J., Martins S., Carvalho T., Enguita F.J., Brito D., Carmo-Fonseca M., Lopes L.R. Whole gene sequencing identifies deep-intronic variants with potential functional impact in patients with hypertrophic cardiomyopathy. PLoS One. 2017; 12 (8): e0182946.
  25. Hershberger R.E., Siegfried J.D. Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J. Am. Coll Cardiol. 2011; 57 (16): 1641–9.
  26. Pérez-Serra A., Toro R., Sarquella-Brugada G., de Gonzalo-Calvo D., Cesar S., Carro E., Llorente-Cortes V., Iglesias A., Brugada J., Brugada R., Campuzano O. Genetic basis of dilated cardiomyopathy. Int. J. Cardiol. 2016; 224: 461–72.
  27. Gudkova A.Ya., Smolina N.A., Semernin E.N., Krutikov A.N., Kostareva A.A. Mutacii i redkie varianty gena desmina v kachestve prichin razvitiya razlichnyh variantov kardiomiopatiy. Translyacionnaya medicina. 2014; 3: 62–72. [Gudkova A.Ya., Smolina N.A., Semernin E.N., Krutikov A.N., Kostareva A.A. Mutatsii i redkie varianty gena desmina v kachestve prichin razvitiya razlichnykh variantov kardiomiopatiy. Translyatsionnaya meditsina. 2014; 3: 62–72 (in Russian).]
  28. Herman D.S., Lam L., Taylor M.R., Wang L., Teekakirikul P., Christodoulou D., Conner L., DePalma S.R., McDonough B., Sparks E., Teodorescu D.L., Cirino A.L., Banner N.R., Pennell D.J., Graw S., Merlo M., Di Lenarda A., Sinagra G., Bos J.M., Ackerman M.J., Mitchell R.N., Murry C.E., Lakdawala N.K., Ho C.Y., Barton P.J., Cook S.A., Mestroni L., Seidman J.G., Seidman C.E. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 2012; 366: 619–28.
  29. Tayal U., Newsome S., Buchan R., Whiffin N., Halliday B., Lota A., Roberts A., Baksi A.J., Voges I., Midwinter W., Wilk A., Govind R., Walsh R., Daubeney P., Jarman J.W.E., Baruah R., Frenneaux M., Barton P.J., Pennell D., Ware J.S., Prasad S.K., Cook S.A. Phenotype and Clinical Outcomes of Titin Cardiomyopathy. J. Am. Coll Cardiol. 2017; 70 (18): 2264–74.
  30. Gigli M., Begay R.L., Morea G., Graw S.L., Sinagra G., Taylor M.R., Granzier H., Mestroni L. A Review of the Giant Protein Titin in Clinical Molecular Diagnostics of Cardiomyopathies. Front Cardiovasc Med. 2016; 3: 21.
  31. LeWinter M.M., Granzier H.L. Titin is a major human disease gene. Circulation. 2013; 127 (8): 938–44.
  32. Taylor M.R., Fain P.R., Sinagra G., Robinson M.L., Robertson A.D., Carniel E., Di Lenarda A., Bohlmeyer T.J., Ferguson D.A., Brodsky G.L., Boucek M.M., Lascor J., Moss A.C., Li W.L., Stetler G.L., Muntoni F., Bristow M.R., Mestroni L.; Familial Dilated Cardiomyopathy Registry Research Group. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J. Am. Coll Cardiol. 2003; 41 (5): 771–80.
  33. Lu Q.W., Wu X.Y., Morimoto S. Inherited cardiomyopathies caused by troponin mutations. J. Geriatr Cardiol. 2013; 10 (1): 91–101.
  34. Mogensen J., Kubo T., Duque M., Uribe W., Shaw A., Murphy R., Gimeno J.R., Elliott P., McKenna W.J. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J. Clin. Invest. 2003; 111 (2): 209–16.
  35. Jean-Charles P.Y., Li Y.J., Nan C.L., Huang X.P. Insights into restrictive cardiomyopathy from clinical and animal studies. J. Geriatr Cardiol. 2011; 8 (3): 168–83.
  36. Peled Y., Gramlich M., Yoskovitz G., Feinberg M.S., Afek A., Polak-Charcon S., Pras E., Sela B.A., Konen E., Weissbrod O., Geiger D., Gordon P.M., Thierfelder L., Freimark D., Gerull B., Arad M. Titin mutation in familial restrictive cardiomyopathy. Int J. Cardiol. 2014; 171 (1): 24–30.
  37. Kostareva A., Kiselev A., Gudkova A., Frishman G., Ruepp A., Frishman D., Smolina N., Tarnovskaya S., Nilsson D., Zlotina A., Khodyuchenko T., Vershinina T., Pervunina T., Klyushina A., Kozlenok A., Sjoberg G., Golovljova I., Sejersen T., Shlyakhto E. Genetic Spectrum of Idiopathic Restrictive Cardiomyopathy Uncovered by Next-GenerationSequencing. PLoS One. 2016; 11 (9): e0163362.
  38. Kaski J.P., Syrris P., Burch M., Tomé-Esteban M.T., Fenton M., Christiansen M., Andersen P.S., Sebire N., Ashworth M., Deanfield J.E., McKenna W.J., Elliott P.M. Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart. 2008; 94 (11): 1478–84.
  39. Calkins H. Arrhythmogenic right ventricular dysplasia/cardiomyopathy-three decades of progress. Circ J. 2015; 79 (5): 901–13.
  40. Pilichou K., Thiene G., Bauce B., Rigato I., Lazzarini E., Migliore F., Perazzolo Marra M., Rizzo S., Zorzi A., Daliento L., Corrado D., Basso C. Arrhythmogenic cardiomyopathy. Orphanet J. Rare Dis. 2016; 11: 33.
  41. Marcus F.I., Edson S., Towbin J.A. Genetics of arrhythmogenic right ventricular cardiomyopathy: a practical guide for physicians. J. Am. Coll Cardiol. 2013; 61 (19): 1945–8.
  42. Shestak A., Blagova O., Dzemeshkevich S., Zaklyazminskaya E. Mutation spectrum in PKP2 and DSG2 genes in Russian patients with arrhythmogenic right ventricular cardiomyopathy. Heart Lung Circ. 2014; 23: 16–7.
  43. Ohno S. The genetic background of arrhythmogenic right ventricular cardiomyopathy. J. Arrhythm. 2016; 32 (5): 398–403.
  44. Probst S., Oechslin E., Schuler P., Greutmann M., Boyé P., Knirsch W., Berger F., Thierfelder L., Jenni R., Klaassen S. Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circulation Cardiovasc Genet. 2011; 4: 367–74.