OPTIMIZATION OF THE METHOD OF THE MULTI-TARGET SINGLE-BASE ELONGATION FOR THE DETECTION OF SOMATIC MUTATIONS IN MALIGNANCIES

DOI: https://doi.org/10.29296/24999490-2019-02-06

A.A. Musaelyan(1), I.V. Chistyakov(1), V.D. Nazarov(1), S.V. Lapin(1), M.V. Sogoyan(1), S.E. Khalchitsky(2), W.L. Emanuel(1), T.W. Lobachevskaya(1), A.L. Akopov(1) 1-I.P. Pavlov First Saint-Petersburg State Medical University, Lva Tolstogo Str. 6–8, Saint Petersburg, 197022, Russian Federation; 2-Turner Scientific Research Institute for Children’s Orthopedics, Parkovaya, 64–68, Pushkin, Saint Petersburg, 196603, Russian Federation E-mail: [email protected]

Background. Genotyping of the tumor samples is necessary for a personalized approach in the treatment of patients with malignancies. The identification of somatic mutations in EGFR and KRAS genes can help to predict the course of the disease and to individualize the therapy. One of the methods for detecting somatic point mutations in EGFR and KRAS genes is the multi-target single-base elongation (MSE). Objective. To optimize MSE for the detecting clinically significant aberrations in the EGFR and KRAS genes in the tumor samples. Material and methods. DNA was isolated from 31 samples of non-small cell lung cancer, 9 of which were formalin-fixed and paraffin embedded (FFPE). Laboratory characteristics of the MSE were compared with such one of real-time PCR, digital PCR, and Sanger sequencing. Results. Protocol for verification the aberrations in the EGFR and KRAS genes has been created. The sensitivity of MSE was determined (48 copies/μl of the mutant DNA). The laboratory characteristics of the method were shown to be comparable with such one of real-time PCR. MSE is able to detect aberrations in FFPE tissue samples. MSE can detect more point mutations in comparison with Sanger sequencing: 26 vs 3%, respectively.
Keywords: 
Conclusion. MSE is a highly sensitive and relatively rapid multiparametric method of genotyping a tumor tissue

Список литературы: 
  1. Srinivasan M., Sedmak D., Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 2002. https://doi.org/10.1016/S0002-9440(10)64472-0.
  2. Gerlinger M., Rowan A.J., Horswell S., Larkin J., Endesfelder D., Gronroos E. et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2012. https://doi.org/10.1056/NEJMoa1113205.
  3. Dias-Santagata D., Akhavanfard S., David S.S., Vernovsky K., Kuhlmann G., Boisvert S.L. et al. Rapid targeted mutational analysis of human tumours: A clinical platform to guide personalized cancer medicine. EMBO Mol. Med. 2010. https://doi.org/10.1002/emmm.201000070.
  4. Lovly C.M., Dahlman K.B., Fohn L.E., Su Z., Dias-Santagata D., Hicks D.J. et al. Routine multiplex mutational profiling of melanomas enables enrollment in genotype-driven therapeutic trials. PLoS One. 2012. https://doi.org/10.1371/journal.pone.0035309.
  5. Sequist L.V., Heist R.S., Shaw A.T., Fidias P., Rosovsky R., Temel J.S. et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann Oncol. 2011. https://doi.org/10.1093/annonc/mdr489.
  6. Cernomaz A.T., Macovei I.I., Pavel I., Grigoriu C., Marinca M., Baty F. et al. Comparison of next generation sequencing, SNaPshot assay and real-time polymerase chain reaction for lung adenocarcinoma EGFR mutation assessment. BMC Pulm Med. 2016; 16. https://doi.org/10.1186/s12890-016-0250-0.
  7. Zhao Y., Zhang X.-Y., Guo J.-J., Zeng A.-Z., Hu J.-L., Huang W.-X. et al. Simultaneous Genotyping and Quantification of Hepatitis B Virus for Genotypes B and C by Real-Time PCR Assay. J. Clin. Microbiol. 2010; 48: 3690 LP-3697.
  8. Jakobsen M.R., Tolstrup M., Søgaard O.S., Jørgensen L.B., Gorry P.R., Laursen A. et al. Transmission of HIV-1 Drug-Resistant Variants: Prevalence and Effect on Treatment Outcome. Clin Infect Dis. 2010. https://doi.org/10.1086/650001.
  9. Li Q., Yang F., Liu R., Luo L., Yang Y., Zhang L. et al. Prevalence and molecular characterization of glucose-6-phosphate dehydrogenase deficiency at the China-Myanmar border. PLoS One. 2015. https://doi.org/10.1371/journal.pone.0134593.
  10. Chen Y., Liu Y., Wang B., Mao J., Wang T., Ye K. et al. Development and validation of a fetal genotyping assay with potential for noninvasive prenatal diagnosis of hereditary hearing loss. Prenat Diagn. 2016. https://doi.org/10.1002/pd.4962.
  11. Palacajornsuk P., Halter C., Isakova V., Tarnawski M., Farmar J., Reid M.E. et al. Detection of blood group genes using multiplex SNaPshot method. Transfusion. 2009. https://doi.org/10.1111/j.1537-2995.2008.02053.x.
  12. Mehta B., Daniel R., Phillips C., McNevin D. Forensically relevant SNaPshot® assays for human DNA SNP analysis: a review. Int J. Legal Med. 2017. https://doi.org/10.1007/s00414-016-1490-5.
  13. van Oers J.M.M., Lurkin I., van Exsel A.J.А., Nijsen Y., van Rhijn B.W.G., van der Aa M.N.M. et al. A simple and fast method for the simultaneous detection of nine fibroblast growth factor receptor 3 mutations in bladder cancer and voided urine. Clin. Cancer Res. 2005. https://doi.org/10.1158/1078-0432.CCR-05-1045.
  14. Smith D.L., Lamy A., Beaudenon-Huibregtse S., Sesboüé R., Laosinchai-Wolf W., Sabourin J.C. et al. A multiplex technology platform for the rapid analysis of clinically actionable genetic alterations and validation for BRAF p.V600E detection in 1549 cytologic and histologic specimens. Arch Pathol Lab Med. 2014. https://doi.org/10.5858/arpa.2013-0002-OA.
  15. Кушлинский Н.Е., Герштейн Е.С., Овчинникова Л.К., Дигаева М.А., Воротников И.К., Давыдов М.И. Биологические маркеры опухолей в клинике достижения, проблемы, перспективы. Российский биотерапевтический журнал. 2009; 3.
  16. [Kushlinskii N.E., Gershtein E.S., Ovchinnikova L.K., Digaeva M.A., Vorotnikov I.K., Davydov M.I. The tumor biological markers in the clinic achievements, problems, prospects. Rossijskij bioterapevticheskij zhurnal Rossijskij bioterapevticheskij zhurnal. 2009; 3 (in Russian)]
  17. Su Z., Dias-Santagata D., Duke M., Hutchinson K., Lin Y.L., Borger D.R. et al. A platform for rapid detection of multiple oncogenic mutations with relevance to targeted therapy in non-small-cell lung cancer. J. Mol. Diagnostics. 2011; 13: 74–84. https://doi.org/10.1016/j.jmoldx.2010.11.010.
  18. Kawamura T., Kenmotsu H., Omori S., Nakashima K., Wakuda K., Ono A. et al. Clinical Factors Predicting Detection of T790M Mutation in Rebiopsy for EGFR-Mutant Non–small-cell Lung Cancer. Clin. Lung Cancer. 2018; 19: 247–52. https://doi.org/10.1016/j.cllc.2017.07.002.
  19. Lavdovskaia E.D., Iyevleva A.G., Sokolenko A.P., Mitiushkina N.V., Preobrazhenskaya E.V., Tiurin V.I. et al. EGFR T790M Mutation in TKI-Naive Clinical Samples: Frequency, Tissue Mosaicism, Predictive Value and Awareness on Artifacts. Oncol Res Treat. 2018; 41. https://doi.org/10.1159/000491441.
  20. Perizzolo M., Winkfein B., Hui S., Krulicki W., Chan J.A., Demetrick D.J. IDH mutation detection in formalin-fixed paraffin-embedded gliomas using multiplex PCR and single-base extension. Brain Pathol. 2012. https://doi.org/10.1111/j.1750-3639.2012.00579.x.