REJUVENATING MANF FACTOR AND ITS FUNCTIONS IN NORMAL AND PATHOLOGICAL CONDITIONS

DOI: https://doi.org/10.29296/24999490-2019-05-01

B.I. Kuznik(1, 2), S.O. Davidov(1, 2), N.I. Chalisova(3, 4) 1-Chita State Medical University, Gorkogo str., 39а, Chyta, 672000, Russian Federation; 2-Innovation Clinical Academy of Health, Kokhanskogo str., 13, Chyta, 672038, Russian Federation; 3-Saint-Petersburg Institute of Bioregulation and Gerontology, Dinamo pr., 3, Saint-Petersburg, 197110, Russian Federation; 4-I.P.Pavlov Institute of Physiology, Adm. Makarova Emb. 6., Saint-Petersburg, 199034, Russian Federation; E-mail: [email protected]

There are presented data about rejuvenating mesencephalic astrocyte-derived neurotrophic factor (MANF) and its physiological functions. This is a new neurotrophic factor, produced by the mesencephalic astrocytes and it is different from other factors by its activity concerning not only the nervous tissue but other tissues. The MANF main function is a protection of the dopamine neuron endoplasmic reticulum (ER) from the stress and apoptosis. The high concentrations of MANF were detected in the brain cortex, hippocampus, cerebellum. MANF is expressed actively in the synovial tissues, cardiomyocytes, pancreas cells, liver tissue. The MANF provides an increase of the regenerative processes, affecting the immune cells. The MANF ability to modulate the cell regenerative functions and the neuroprotection, and also an increase of the stem cell function, plays a great role in the so-named “rejuvenating” functions of MANF. It was detected, using the method of the heterochronic parabiosis, that the MANF concentration is increased highly in the blood of the old mice by an increase of the neuron quantity in the brain, and also by the improvement of the heart, liver function. MANF can protect the cilia of dopaminergic neurons at the early stage of Parkinson disease, it has the neuroprotective effect in the early stages of the brain damage, produced by the subarachnoidal bleeding in the mice. The MANF protein, possessing many functions, plays the basic role in the processes of the recovery of the neuron functions in both Alzheimer and Parkinson diseases, insults and traumatic damages of the brain. There are data presented about rejuvenating mesencephalic astrocyte-derived neurotrophic factor (MANF) and its physiological functions. This is a new neurotrophic factor, produced by the mesencephalic astrocytes and it is different from other neurotrophic factors by its activity concerning not only the nervous tissue but many other tissues. The MANF main function is a protection of the dopamine neuron endoplasmic reticulum (ER) from the stress and apoptosis development. The relatively high concentrations of MANF were detected in the brain cortex, hippocampus and in the cerebellum Purkinje cells. Moreover, MANF is expressed actively in the synovial tissues by their infiltration with the inflammatory cells, in the cardiomyocytes, pancreas cells, in the B hepatitis liver tissue. The MANF immunomodulating function provides an increase of the regenerative processes, affecting directly the immune cells. The MANF ability to modulate the cell regenerative functions by the synchronous stimulation of the neuroprotection, and also of an increase of the stem cell function, plays a great role in the so-named «rejuvenating» functions of this protein. It was detected, using the method of the heterochronic parabiosis (the creation of the common blood circulation in the young and old animals), that the MANF concentration is increased highly in the blood of the old mice by an increase of the neuron quantity in the brain, (especially in the hippocampus), and also by the improvement of the heart, liver function. MANF can protect the cilia of dopaminergic neurons at the early stage of Parkinson disease, and also it has the neuroprotective effect in the early stages of the brain damage, produced by the subarachnoidal bleeding in the mice. The MANF protein, possessing many functions, plays the basic role in the processes of regeneration, increase and recover of the neuron functions in both Alzheimer and Parkinson diseases, insults and traumatic damages of the brain.
Keywords: 
MANF, rejuvenation, dopamine neurons, endoplasmic reticulum, cardiomyocytes, Alzheimer disease, Parkinson disease

Список литературы: 
  1. Lindholm P., Voutilainen M. H., Lauren J., Peranen J., Leppanen V. M., Andressoo J.O., Lindahl M., Janhunen S., Kalkkinen N., Timmusk T., Tuominen R.K, Saarma M. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature. 2007; 448 (7149): 73–7.
  2. Voutilainen M.H., Bäck S., Pörsti E., Toppinen L., Lindgren L., Lindholm P., Peranen J., Saarma M. Tuominen R.K. Mesencephalic astrocyte-derived neurotrophic factor is neurorestorative in rat model of Parkinson’s disease. J. Neurosci. 2009; 29 (30): 9651–9. https://doi.org/10.1523/JNEUROSCI.0833-09.2009.
  3. Airavaara M., Shen H., Kuo C.C., Peränen J., Saarma M., Hoffer B., Wang Y. Mesencephalic astrocyte-derived neurotrophic factor reduces ischemic brain injury and promotes behavioral recovery in rats. J. Comp Neurol. 2009; 515 (1): 116–24. https://doi.org/10.1002/cne.22039.
  4. Chen L., Feng L., Wang X., Du J., Chen Y., Yang W., Zhou C., Cheng L., Shen Y., Fang S., Li J., Shen Y..Mesencephalic astrocyte-derived neurotrophic factor is involved in inflammation by negatively regulating the NF-kappaB pathway. Sci. Rep. 2015; (5): 8133. https://doi.org/10.1038/srep08133.
  5. Li T., Xu W., Gao L., Guan G., Zhang Z., He P., Xu H., Fan L., Yan F., Chen G. Mesencephalic astrocyte-derived neurotrophic factor affords neuroprotection to early brain injury induced by subarachnoid hemorrhage via activating Akt-dependent prosurvival pathway and defending blood-brain barrier integrity.FASEB J. 2019; 33 (2): 1727–41. https://doi.org/10.1096/fj.201800227RR.
  6. Hellman M., Arumäe U., Yu L.Y., Lindholm P., Peränen J., Saarma M., Permi P. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has a unique mechanism to rescue apoptotic neurons. J. Biol. Chem. 2011; 286: 2675–80. https://doi.org/10.1016/j.expneurol.2018.06.016.
  7. Lindahl M., Saarma, M. & Lindholm, P. Unconventional neurotrophic factors CDNF and MANF: structure, physiological functions and therapeutic potential. Neurobiol. Dis. 2017; 97, 90–102.
  8. Bai M., Vozdek R., Hnizda A., Jiang C., Wang B., Kuchar L., Li T., Zhang Y., Wood C., Feng L., Dang Y., Ma D.K. Conserved roles of C. elegans and human MANFs in sulfatide binding and cytoprotection. Nat Commun. 2018; 9 (1): 897. https://doi.org/10.1038/s41467-018-03355-0.
  9. Lindholm P., Lindholm P., Peränen J., Andressoo J.O., Kalkkinen N., Kokaia Z., Lindvall O., Timmusk T., Saarma M. MANF is widely expressed in mammalian tissues and differently regulated after ischemic and epileptic insults in rodent brain. Mol. Cell. Neurosci. 2008; 39: 356–71.
  10. Yan Y., Rato C., Rohland L., Preissler S., Ron D. MANF antagonizes nucleotide exchange by the endoplasmic reticulum chaperone BiP. Nat Commun. 2019; 10 (1): 541. https://doi.org/10.1038/s41467-019-08450-4.
  11. Shen Y., Sun A., Wang Y., Cha D., Wang H., Wang F., Feng L., Fang S., Shen Y. Upregulation of mesencephalic astrocyte-derived neurotrophic factor in glial cells is associated with ischemia-induced glial activation. J Neuroinflammation. 2012; 23 (9): 254. https://doi.org/10.1186/1742-2094-9-254.
  12. Tseng K.Y., Danilova T., Domanskyi A.., Saarma M, Lindahl M., Airavaara M. MANF Is Essential for Neurite Extension and Neuronal Migration in the Developing Cortex. eNeuro. 2017; 4 (5): 214–17. https://doi.org/10.1523/ENEURO.0214-17.2017.
  13. 13. Wang D., Hou C., Cao Y.., Cheng Q, Zhang L., Li H., Feng L., Shen Y. XBP1 activation enhances MANF expression via binding to endoplasmic reticulum stress response elements within MANF promoter region in hepatitis B. Int. J. Biochem. Cell Biol. 2018; 99: 140–6. https://doi.org/10.1016/j.biocel.2018.04.007.
  14. 14. Villeda S.A., Luo J., Mosher K.I., Zou B., Britschgi M., Bieri G., Stan T.M., Fainberg N., Ding Z, Eggel A., Lucin K.M., Czirr E., Park J.S., Couillard-Després S., Aigner L., Li G., Peskind E.R., Kaye J.A., Quinn J.F., Galasko D.R., Xie X.S., Rando T.A., Wyss-Coray T. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011; 477 (7362): 90–4. https://doi.org/10.1038/nature10357.
  15. Villeda S.A., Plambeck K.E., Middeldorp J., Castellano J.M., Mosher K.I., Luo J., Smith L.K., Bieri G., Lin K., Berdnik D., Wabl R., Udeochu J., Wheatley E.G., Zou B., Simmons D.A., Xie X.S., Longo F.M., Wyss-Coray T. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nature Medicine. 2014; 20 (6): 659–63. https://doi.org/10.1038/nm.3569
  16. Loffredo F.S., Steinhauser M.L., Jay S.M., Gannon J, Pancoast J.R., Yalamanchi P., Sinha M., Dall’Osso C., Khong D., Shadrach J.L., Miller C.M., Singer B.S., Stewart A., Psychogios N., Gerszten R.E., Hartigan A.J., Kim M.J., Serwold T., Wagers A.J., Lee R.T. Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy. Cell. 2013; 153 (4): 828–39. https://doi.org/10.1016/j.cell.2013.04.015.
  17. Villeda S.A., Wyss-Coray T. The circulatory systemic environment as a modulator of neurogenesis and brain aging. Autoimmun Rev. 2013; 12 (6): 674–7. https://doi.org/10.1016/j.autrev.2012.10.014.
  18. Sousa-Victor P., Garcia-Prat L., Muñoz-Cánoves P. New mechanisms driving muscle stem cell regenerative decline with aging. Int. J. Dev. Biol. 2018; 62 (6–8): 583–90. https://doi.org/0.1387/ijdb.180041pm.
  19. Neves J., Sousa-Victor P., Jasper H. Rejuvenating strategies for stem cell-based therapies in aging. Cell Stem Cell. 2017; 20 (2): 161–75. https://doi.org/10.1016/j.stem.2017.01.008.
  20. Neves J., Zhu J., Sousa-Victor P., Konjikusic M., Riley R., Chew S., Qi Y., Jasper H., Lamba D.A. Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science. 2016; 353: 6294. https://doi.org/10.1126/science.aaf3646.
  21. Sousa-Victor P., Jasper H., Neves J. Trophic Factors in Inflammation and Regeneration: The Role of MANF and CDNF. Front Physiol. 2018; 20 (9): 1629. https://doi.org/10.3389/fphys.2018.01629.
  22. Yang S., Huang S., Gaertig M.A.., Li XJ., Li S. Age-dependent decrease in chaperone activity impairs MANF expression, leading to Purkinje cell degeneration in inducible SCA17 mice. Neuron. 2014; 81 (2): 349–65. https://doi.org/10.1016/j.neuron.2013.12.002.
  23. Richman C., Rashid S., Prashar S., Mishra R., Selvaganapathy .PR., Gupta B.P. C. elegans MANF Homolog Is Necessary for the Protection of Dopaminergic Neurons and ER Unfolded Protein Response.Front Neurosci. 2018; 12: 544. https://doi.org/10.3389/fnins.2018.00544.
  24. Olson L., Faulkner S., Lundströmer K., Kerenyi A., Kelen D., Chandrasekaran M., Ådén U., Olson L., Golay X., Lagercrantz H., Robertson N.J., Galter D. Comparison of three hypothermic target temperatures for the treatment of hypoxic ischemia: mRNA level responses of eight genes in the piglet brain. Transl. Stroke Res. 2013; 4 (2): 248–57. https://doi.org/10.1007/s12975-012-0215-4.
  25. Camacho E.T., Lenhart S., Melara L.A., Villalobos M.C., Wirkus S. Optimal control with MANF treatment of photoreceptor degeneration. Math. Med. Biol. 2019 Feb 27. pii: dqz003. https://doi.org/10.1093/imammb/dqz003. [Epub ahead of print].
  26. Mätlik K., Anttila J.E., Kuan-Yin T., Smolander O.P., Pakarinen E., Lehtonen L., Abo-Ramadan U., Lindholm P., Zheng C., Harvey B., Arumäe U., Lindahl M., Airavaara M. Poststroke delivery of MANF promotes functional recovery in rats. Sci Adv. 2018; 4 (5): eaap8957. https://doi.org/10.1126/sciadv.aap8957.
  27. McLaughlin T., Dhimal N., Li J., Wang J.J., Zhang S.X. p58IPK Is an Endogenous Neuroprotectant for Retinal Ganglion Cells.Front Aging Neurosci. 2018; 7 (10): 267. https://doi.org/10.3389/fnagi.2018.00267.
  28. Tseng K.Y., Anttila J.E., Khodosevich K., Tuominen R.K., Lindahl M., Domanskyi A., Airavaara M. MANF Promotes Differentiation and Migration of Neural Progenitor Cells with Potential Neural Regenerative Effects in Stroke. Mol Ther. 2018; 26 (1): 238–55. https://doi.org/10.1016/j.ymthe.2017.09.019.
  29. Wang X.Y., Song M.M., Bi S.X., Shen Y.J., Shen Y.X., Yu Y.Q. MRI Dynamically Evaluates the Therapeutic Effect of Recombinant Human MANF on Ischemia/Reperfusion Injury in Rats. Int. J. Mol. Sci. 2016; 17 (9). pii: E1476. https://doi.org/10.3390/ijms17091476.
  30. Zhang J., Cai Q., Jiang M., Liu Y., Gu H., Guo J.., Sun H, Fang J., Jin L. Mesencephalic astrocyte-derived neurotrophic factor alleviated 6-OHDA-induced cell damage via ROS-AMPK/mTOR mediated autophagic inhibition. Exp. Gerontol. 2017; 89: 45–56. https://doi.org/10.1016/j.exger.2017.01.010.
  31. Liu H., Yu C., Yu H., Zhong L., Wang Y., Liu J., Zhang S., Sun J., Duan L., Gong L., Yang J. Cerebral dopamine neurotrophic factor protects H9c2 cardiomyocytes from apoptosis. Herz. 2018; 43 (4): 346–51. https://doi.org/10.1007/s00059-017-4564-3
  32. Nasrolahi A., Mahmoudi J., Akbarzadeh A., Karimipour M., Sadigh-Eteghad S., Salehi R., Farhoudi M. Neurotrophic factors hold promise for the future of Parkinson’s disease treatment: is there a light at the end of the tunnel? Rev Neurosci. 2018; 29 (5): 475–89. https://doi.org/10.1515/revneuro-2017-0040.
  33. Zhang Z. Shen Y., Luo H., Zhang F., Peng D., Jing L., Wu Y., Xia X., Song Y., Li W., Jin L. MANF protects dopamine neurons and locomotion defects from a human α-synuclein induced Parkinson’s disease model in C. elegans by regulating ER stress and autophagy pathways. Exp. Neurol. 2018; 308: 59–71. https://doi.org/10.1016/j.expneurol.2018.06.016.
  34. Axelsen T.M., Woldbye D.P.D. Gene Therapy for Parkinson’s Disease, An Update. J. Parkinsons Dis. 2018; 8 (2): 195–215. https://doi.org/10.3233/JPD-181331.
  35. Yang S., Li S., Li X.J.. MANF: A New Player in the Control of Energy Homeostasis, and Beyond. Front Physiol. 2018; 29 (9): 1725. https://doi.org/10.3389/fphys.2018.01725.
  36. Huang R.R., Hu W., Yin Y.Y., Wang Y.C., Li W.P., Li W.Z. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice. Int. J. Mol. Med. 2015; 35 (2): 553–9. https://doi.org/10.3892/ijmm.2014.2026.
  37. Xu S., Di Z., He Y., Wang R., Ma Y., Sun R., Li J., Wang T., Shen Y., Fang S, Feng L., Shen Y. Mesencephalic astrocyte-derived neurotrophic factor (MANF) protects against Aβ toxicity via attenuating Aβ-induced endoplasmic reticulum stress. J. Neuroinflammation. 2019; 16 (1): 35. https://doi.org/10.1186/s12974-019-1429-0.
  38. Tadimalla A., Belmont P.J., Thuerauf D.J., Glassy MS., Martindale J.J., Gude N., Sussman M.A., Glembotski CC. Mesencephalic astrocyte-derived neurotrophic factor is an ischemia-inducible secreted endoplasmic reticulum stress response protein in the heart. Circ. Res. 2008; 103 (11): 1249–58. https://doi.org/10.1161/CIRCRESAHA.108.180679.
  39. Glembotski C.C. Functions for the cardiomyokine, MANF, in cardioprotection, hypertrophy and heart failure. J. Mol. Cell Cardiol. 2011; 51 (4): 512–7. https://doi.org/10.1016/j.yjmcc.2010.10.008.
  40. Glembotski C.C., Thuerauf D.J., Huang C., Vekich J.A., Gottlieb R.A., Doroudgar S. Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion. J. Biol. Chem. 2012; 287 (31): 25893–904. https://doi.org/10.1074/jbc.M112.356345.
  41. Galli Emilia, Taina Härkönen, Markus T. Sainio, Mart Ustav, Urve Toots, Arto Urtti, Marjo Yliperttula, Maria Lindahl, Mikael Knip, Mart Saarma, Päivi Lindholm. Increased circulating concentrations of mesencephalic astrocyte-derived neurotrophic factor in children with type 1 diabetes. Sci. Rep. 2016; 6: 29058. https://doi.org/10.1038/srep29058.
  42. Danilova T., Belevich I., Li H., Palm E., Jokitalo E., Otonkoski T., Lindahl M. MANF Is Required for the Postnatal Expansion and Maintenance of Pancreatic β-Cell Mass in Mice. Diabetes. 2019; 68 (1): 66–80. https://doi.org/10.2337/db17-1149.
  43. Danilova T., Lindahl M. Pancreatic Beta Cells and Diabetes..Front Physiol. 2018; 9: 1457. https://doi.org/10.3389/fphys.2018.01457.
  44. Hakonen E., Chandra V., Fogarty C.L., Yu N.Y., Ustinov J., Katayama S., Galli E., Danilova T., Lindholm P., Vartiainen A., Einarsdottir E., Krjutškov K., Kere J., Saarma M., Lindahl M., Otonkoski T. MANF protects human pancreatic beta cells against stress-induced cell death. Diabetologia. 2018; 61 (10): 2202–14. https://doi.org/10.1007/s00125-018-4687-y.
  45. Bell P.A., Dennis E.P., Hartley C.L., Jackson R.M., Porter A., Boot-Handford R.P., Pirog K.A., Briggs MD. Mesencephalic astrocyte-derived neurotropic factor is an important factor in chondrocyte ER homeostasis. Cell Stress Chaperones. 2019; 24 (1): 159–73. https://doi.org/10.1007/s12192-018-0953-7.
  46. Havinson V.H., Kuznik B.I., Ryzhak G.A. Peptidnye geroprotektory – epigeneticheskie reguljatory fiziologicheskih funktsij organizma. SPb: Izd-vo RGPU im. A.I. Gertsena, 2014; 271. [Khavinson V., Kh., Kuznik B.I., Rizhak G.A. Peptide geroprotectors – the epigenetic regulators of the organism physiological functions. SPb: Edition A.I. Herzen RGPU, 2014; 271 (in Russian)]
  47. Chalisova N.I., Zhekalov A.N. The Effect of Dipeptides Consisting of Leucine and Lysine on Cell Proliferation in an organotypic Culture of Myocardium and Spleen Tissue from Young and Old Rats. Advances in Gerontology. 2015; 5 (3): 180–3.
  48. Khavinson V., Linkova N., Kukanova E., Bolshakova A., Gainullina A., Tendler S., Morozova E., Tarnovskaya S., Susanti D., Vinski P., Bakulev V., Kasyanenko N. Neuroprotective Effect of EDR Peptide in Mouse Model of Huntington’s Disease. J. Neurol. Neurosci. 2017; 8 (5): 1–11. https://doi.org/10.21767/2171-6625.1000166.
  49. Khavinson V.Kh., Kuznik B.I., Tarnovskaya S.I., Linkova N.S. GDF11 Protein as a Geroprotector. Biology Bulletin Reviews. 2016; 6 (2): 141–8.
  50. Kuznik B.I., Davydov S.O., Popravka E.S., Lin’kova N.S., Kozina L.S., Khavinson V.Kh. Epigenetic Mechanisms of Peptide-Driven Regulation and Neuroprotective Protein FKBP1b. Molecular biology. 2019; 53 (2): 339–48.