FUCOIDAN AS A COMPONENT IN THE DEVELOPMENT OF TARGET SYSTEMS FOR THE DELIVERY OF MEDICINAL SUBSTANCES

DOI: https://doi.org/10.29296/24999490-2019-05-03

V.E. Suprunchuk, E.V. Denisova North-Caucasus Federal University, Pushkina str., 1a, Stavropol, 355009, Russian Federation E-mail: [email protected]

The growing interest in the group of highly sulfated heteropolysaccharides, defined as fucoidans, is due to a wide spectrum of their biological activity. The expansion of the direction of their application is associated with the search for applications in the development of medicinal materials, in particular, the targeted drug delivery system. The main types of nano- and microstructural systems created using fucoidan are objects formed by the electrostatic attraction forces of oppositely charged polyelectrolytes (layer-by-layer adsorption, polyelectrolyte complexes), emulsions, metal-polymer complexes. The use of fucoidan as a coating for bio magnets also allows its application in theranostics. The resulting carriers containing fucoidan, are applicable for targeted delivery of therapeutic agents such as doxorubicin, curcumin, poly-L-lysine, low molecular weight anti-TB drugs, etc. The shipping method also varies. There are developing carriers with the use of fucoidan for oral, inhalation, intravenous route of administration. However, such systems have low toxicity, are biodegradable. Degradation products do not accumulate in the body but are metabolized. In addition, it is possible to obtain a hollow matrix with a high degree of loading. All this will expand the possibilities of the use of this polysaccharide in the pharmaceutical industry and clinical therapy.
Keywords: 
fucoidan, targeting, fucospheres, magnetite, capsulation

Список литературы: 
  1. Kloareg B., Demarty M., Mabeau S. Polyanionic characteristics of purified sulphated homofucans from brown algae. Int J. Biol. Macromol. 1986; 8 (6): 380–6.
  2. Cong Q., Chen H., Liao W., Xiao F., Wang P., Qin Y., Dong Q., Ding K. Structural characterization and effect on anti-angiogenic activity of a fucoidan from Sargassum fusiforme. Carbohydr Polym. 2016; 136: 899–907.
  3. Ale M.T., Maruyama H., Tamauchi H., Mikkelsen J.D., Meyer A.S. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J. Biol. Macromol. 2011; 49 (3): 331–6.
  4. Vinnitskiy D.Z., Krylov V.B., Ustyuzhanina N.E., Dmitrenok A.S., Nifantiev N.E. The synthesis of heterosaccharides related to the fucoidan from Chordaria flagelliformis bearing an α- α-L-fucofuranosyl unit. Org Biomol Chem [Internet]. 2016; 14 (2): 598–611. Available from: http://xlink.rsc.org/?DOI=C5OB02040A
  5. Odinets A.G., Tatarinova L.V. Fukoidan:sovremennye predstavlenija o ego roli v reguljatsii uglevodnogo obmena. V mire lekarstv. 2016; 3 (49): 40–4. [Odinets A.G., Tatarinova L.V. Fucoidan: modern ideas about its role in the regulation of carbohydrate metabolism. In the world of medicine. 2016; 3 (49): 40–4 (in Russian)]
  6. Muhamedzhanov E.K., Esyrev O.V. Fukoidan – natural'nyj protektor ZhKT. In: Gastroenterologija Sankt-Peterburga. 2016; 17–8. [Mukhamedzhanov E.C., Esyrev O.V. Fucoidan is a natural protector of the digestive tract. In: Gastroenterology of St. Petersburg. 2016; 17–8 (in Russian)]
  7. Sanina T.V., Kir'janova S.V., Cheremushkina I.V., Korneeva O.S. Issledovanie bifidogennoj aktivnosti fukozy i ee polimerov. Vestnik VGU, serija Himija Biologija Farmatsija. 2011; 1: 141–3. [Sanina T.V., Kiryanova S.V., Cheremushkina I.V., Korneyev O.S. Study of bifidogenic activity of fucose and its polymers. Herald of VSU, Chemistry Biology Pharmacy series. 2011; 1: 141–3 (in Russian)]
  8. Besednova N.N., Makarenkova I.D., Zvjagintseva T.N., Kuznetsova T.A., Zaporozhets T.S. Ingibirujuschee dejstvie polisaharidov morskih gidrobiontov na formirovanie bioplenok. Antibiotiki i himioterapija. 2016; 61: 9–10. [Besednova N.N., Makarenkova I.D., Zvyagintseva T.N., Kuznetsova T.A., Zaporozhets T.S. Inhibitory effect of marine hydrobiont polysaccharides on biofilm formation. Antibiotics and chemotherapy. 2016; 61: 9–10 (in Russian)]
  9. Katel'nikova A.E., Makarov V.G., Vorob'eva V.V., Pozharitskaja O.N., Shikov A.N., Shabanov P.D. Perspektivy ispol'zovanija lekarstvennyh sredstv na osnove gidrobiontov v lechenii respiratornyh virusnyh infektsij i ih oslozhnenij. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii. 2017; 15 (1): 4–13. [Katelnikova A.E., Makarov V.G., Vorobyov V.V., Pozharitskaya O.N., Shikov A.N., Shabanov P.D. Prospects for the use of drugs based on hydrobionts in the treatment of respiratory viral infections and their complications. Reviews of clinical pharmacology and drug therapy. 2017; 15 (1): 4–13 (in Russian)]
  10. Makarenkova I.D., Leonova G.N., Majstrovskaja O.S., Zvjagintseva T.N., Imbs T.I., Ermakova S.P., Besednova N.N. Protivovirusnaja aktivnost' sul'fatirovannyh polisaharidov iz buryh vodoroslej pri eksperimental'nom kleschevom entsefalite : svjaz' struktury i funktsii. Tihookeanskij meditsinskij zhurnal. 2012; 1: 44–6. [Makarenkova I.D., Leonov G.N., Maistrovskaya O.S., Zvyagintseva T.N., Imb T.I., Ermakova S.P., Besednova N.N. Antiviral activity of sulfated polysaccharides from brown algae in experimental tick-borne encephalitis: the relationship of structure and function. Pacific Medical J. 2012; 1: 44–6 (in Russian)]
  11. Kryzhanovskij S.P., Bogdanovich L.N., Knyshova V.V., Persijanova E.V., Zaporozhets T.S., Zvjagintseva T.N. Vlijanie polisaharidov buryh vodoroslej na protsessy lipoperoksidatsii i antioksidantnoj zaschity u patsientov s dislipidemiej. In: Materialy Nauchno-prakticheskoj konferentsii «Fundamental'naja dal'nevostochnaja nauka – meditsine». 2017; 93–7. [Kryzhanovsky S.P., Bogdanovich L.N., Knyshova V.V., Persianova E.V., Zaporozhets T.S., Zvyagintseva T.N. The effect of brown algae polysaccharides on the processes of lipid peroxidation and antioxidant protection in patients with dyslipidemia. In: Materials of the Scientific and Practical Conference «Fundamental Far Eastern Science – Medicine». 2017; 93–7 (in Russian)]
  12. Odinets A.G., Orlov O.I., Il'in V.K., Revina A.A., Antropova I.G., Fenin A.A., Tatarinova L.V., Prokof'ev A.S. Radioprotektivnye i antioksidantnye svojstva gelja iz buryh morskih vodoroslej. Vestnik vosstanovitel'noj meditsiny. 2015; 89–96. [Odinets A.G., Orlov O.I., Ilyin V.K., Revina A.A., Antropova I.G., Fenin A.A., Tatarinova L.V., Prokofiev A.S. Radioprotective and antioxidant properties of the gel from brown algae. Bulletin of restorative medicine. 2015; 89–96 (in Russian)]
  13. Urvantseva A.M., Bakunina I.Ju., Kim N.Ju., Isakov V.V., Glazunov V.P., Zvjagintseva T.N. Vydelenie ochischennogo fukoidana iz prirodnogo kompleksa s polifenolami i ego harakteristika. Himija rastitel'nogo syr'ja. Himija rastitel'nogo syr'ja. 2004; (3): 15–24. [Urvantseva A.M., Bakunin U.Y., Kim N.Y., Isakov V.V., Glazunov V.P., Zvyagintsev T.N. Isolation of purified fucoidan from a natural complex with polyphenols and its characteristic. Chemistry of plant raw materials. Chemistry of plant materials. 2004; (3): 15–24 (in Russian)]
  14. Baba B.M., Mustapha W.A.W., Joe L.S. Effects of extraction solvent on fucose content in fucoidan extracted from brown seaweed (Sargassum sp.) from Pulau Langkawi, Kedah, Malaysia. In: AIP Conference Proceedings. AIP Publishing. 2016; 030045-1-030045–5.
  15. Fitton J.H., Stringer D.N., Karpiniec S.S. Therapies from fucoidan: An update. Mar Drugs. 2015; 13 (9): 5920–46.
  16. Holtkamp A.D., Kelly S., Ulber R., Lang S. Fucoidans and fucoidanases-focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl Microbiol Biotechnol. 2009; 82 (1): 1–11.
  17. Yuan Y., Macquarrie D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr Polym [Internet]. 2015 Sep 20 [cited 2018 Aug 8]; 129: 101–7. Available from: https://www.sciencedirect.com/science/article/pii/S0144861715003732
  18. Li B., Lu F., Wei X., Zhao R. Fucoidan: Structure and bioactivity. Molecules. 2008; 13 (8): 1671–95.
  19. Bruhn A., Janicek T., Manns D., Nielsen M.M., Balsby T.J.S., Meyer A.S., Rasmussen M.B., Hou X., Saake B., Göke C., Bjerre A.B. Crude fucoidan content in two North Atlantic kelp species, Saccharina latissima and Laminaria digitata–seasonal variation and impact of environmental factors. J Appl Phycol. 2017; 29 (6): 3121–37.
  20. Khatuntseva E.A., Ustuzhanina N.E., Zatonskii G.V., Shashkov A.S., Usov A.I., Nifant’ev N.E. Synthesis, NMR and Conformational Studies of Fucoidan Fragments 1: Desulfated 2,3- and 3,4-Branched Trisaccharide Fragments and Constituting Disaccharides. J. Carbohydr Chem. 2000.
  21. Cumashi A., Ushakova N.A., Preobrazhenskaya M.E., D’Incecco A., Piccoli A., Totani L., Tinari N., Morozevich G.E., Berman A.E., Bilan M.I., Usov A.I., Ustyuzhanina N.E., Grachev A.A., Sanderson C.J., Kelly M., Rabinovich G.A., Iacobelli S., Nifantiev N.E. A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology. 2007; 17 (5): 541–52.
  22. Reddy L.C.N., Reddy R.S.P., Rao K.K.S.V., Subha M.C.S., Rao C.K. Development of polymeric blend microspheres from chitosan- hydroxypropylmethyl cellulose for controlled release of an anti-cancer drug. J. Korean Chem Soc. 2013; 57 (14): 439–46.
  23. Berkland C., King M., Cox A., Kim K. (Kevin), Pack D.W. Precise control of PLG microsphere size provides enhanced control of drug release rate. J. Control. Release [Internet]. 2002 Jul 18 [cited 2018 Aug 19]; 82 (1): 137–47. Available from: https://www.sciencedirect.com/science/article/pii/S0168365902001360
  24. Antipov A.A., Sukhorukov G.B. Polyelectrolyte multilayer capsules as vehicles with tunable permeability. Adv Colloid Interface Sci. 2004; 111 (1): 49–61.
  25. Pastorino L., Dellacasa E., Noor M.R., Soulimane T., Bianchini P., D’Autilia F., Antipov A., Diaspro A., Tofail S.A.M., Ruggiero C. Multilayered polyelectrolyte microcapsules: Interaction with the enzyme cytochrome c oxidase. PLoS One. 2014; 9 (11): 5–11.
  26. Venkatesan J., Anil S., Kim S.-K., Shim M. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery. Polymers (Basel). 2016; 8 (2): 30.
  27. Jamshidi A., Shabanpour B., Pourashouri P., Raeisi M. Using WPC-inulin-fucoidan complexes for encapsulation of fish protein hydrolysate and fish oil in W1/O/W2 emulsion: Characterization and nutritional quality. Food Res Int [Internet]. 2018 Dec 1 [cited 2018 Aug 19]; 114: 240–50. Available from: https://www.sciencedirect.com/science/article/pii/S0963996918306045
  28. Hwang P.A., Lin X.Z., Kuo K.L., Hsu F.Y. Fabrication and cytotoxicity of fucoidan-cisplatin nanoparticles for macrophage and tumor cells. Materials (Basel). 2017; 10 (3): 291-1-291–10.
  29. Silva T.H., Alves A., Popa E.G., Reys L.L., Gomes M.E., Sousa R.A., Silva S.S., Mano J.F., Reis R.L. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter. 2012; 2 (4): 278–89.
  30. Tako M. Rheological characteristics of fucoidan isolated from commercially cultured Cladosiphon okamuranus. Bot Mar. 2003; 46 (5): 461–5.
  31. Fan J., Liu Y., Wang S., Liu Y., Li S., Long R., Zhang R., Kankala R.K. Synthesis and characterization of innovative poly(lactide-co-glycolide)-(poly-L-ornithine/ fucoidan) core–shell nanocarriers by layer-by-layer self-assembly. RSC Adv. 2017; 7: 32786–94.
  32. Kim D.Y., Shin W.S. Unique characteristics of self-assembly of bovine serum albumin and fucoidan, an anionic sulfated polysaccharide, under various aqueous environments. Food Hydrocoll. 2015; 44: 471–7.
  33. Kim D.-Y., Shin W.-S. Functional improvements in bovine serum albumin–fucoidan conjugate through the Maillard reaction. Food Chem [Internet]. 2016 Jan 1 [cited 2018 Aug 17]; 190: 974–81. Available from: https://www.sciencedirect.com/science/article/pii/S0308814615009383
  34. Sezer A.D., Akbuǧa J. Fucosphere – New microsphere carriers for peptide and protein delivery: Preparation and in vitro characterization. J Microencapsul. 2006; 23 (5): 513–22.
  35. Sezer A.D., Cevher E., Hatipoǧlu F., Oǧurtan Z., Baş A.L., Akbuǧa J. The use of fucosphere in the treatment of dermal burns in rabbits. Eur J Pharm Biopharm. 2008; 69 (1): 189–98.
  36. Lee E.J., Lim K.-H. Relative charge density model on chitosan–fucoidan electrostatic interaction: Qualitative approach with element analysis. J Biosci Bioeng [Internet]. 2015 Feb 1 [cited 2018 Aug 20]; 119 (2): 237–46. Available from: https://www.sciencedirect.com/science/article/pii/S1389172314002552
  37. Liu Y., Yao W., Wang S., Geng D., Zheng Q., Chen A. Preparation and Characterization of Fucoidan-Chitosan Nanospheres by the Sonification Method. J. Nanosci Nanotechnol. 2014; 14 (5): 3844–9.
  38. Huang Y.C., Li R.Y. Preparation and characterization of antioxidant nanoparticles composed of chitosan and fucoidan for antibiotics delivery. Mar Drugs. 2014; 12 (8): 4379–98.
  39. Huang Y.C., Chen J.K., Lam U.I., Chen S.Y. Preparing, characterizing, and evaluating chitosan/fucoidan nanoparticles as oral delivery carriers. J. Polym Res. 2014; 21 (5): 415: 1–9.
  40. Lu K.Y., Li R., Hsu C.H., Lin C.W., Chou S.C., Tsai M.L., Mi F.L. Development of a new type of multifunctional fucoidan-based nanoparticles for anticancer drug delivery. Carbohydr Polym. 2017; 165: 410–20.
  41. Kumari A., Yadav S.K., Yadav S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surfaces B Biointerfaces [Internet]. 2010 Jan 1 [cited 2018 Aug 20]; 75 (1): 1–18. Available from: https://www.sciencedirect.com/science/article/pii/S0927776509004111
  42. Ravivarapu H., Mahalingam R., Jasti B.R. Design of Controlled Release Drug Delivery Systems. Des Control Release Drug Deliv Syst. 2006; 271–303.
  43. Ravivarapu H.B., Lee H., DeLuca P.P. Enhancing initial release of peptide from poly(d,l-lactide-co-glycolide) (PLGA) microspheres by addition of a porosigen and increasing drug load. Pharm Dev Technol. 2000; 5 (2): 287–96.
  44. Ravivarapu H.B., Burton K., DeLuca P.P. Polymer and microsphere blending to alter the release of a peptide from PLGA microspheres. Eur J Pharm Biopharm [Internet]. 2000 Sep 1 [cited 2018 Aug 20]; 50 (2): 263–70. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0939641100000990
  45. Ferreira S.A. Development of fucoidan/chitosan nanoparticulate systems for protein administration through mucosal routes. 2012.
  46. Sezer A.D., Akbuğa J. The design of biodegradable ofloxacin-based core-shell microspheres: Influence of the formulation parameters on in vitro characterization. Pharm Dev Technol. 2012; 17 (1): 118–24.
  47. Chandur V.K., Badiger A.M., Rao K.R.S.S. Characterizing formulations containing derivatized chitosan with polymer blending. Int J. Res Pharm Chem [Internet]. 2011; 4 (1): 950–67. Available from: www.ijrpc.com
  48. Sezer A.D., Akbuğa J. Comparison on In Vitro Characterization of Fucospheres and Chitosan Microspheres Encapsulated Plasmid DNA (pGM-CSF): Formulation Design and Release Characteristics. AAPS PharmSciTech. 2009; 10 (4): 1193–9.
  49. Wu S.J., Don T.M., Lin C.W., Mi F.L. Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar Drugs. 2014; 12 (11): 5677–97.
  50. Yu S.-H., Wu S.-J., Wu J.-Y., Wen D.-Y., Mi F.-L. Preparation of fucoidan-shelled and genipin-crosslinked chitosan beads for antibacterial application. Carbohydr Polym [Internet]. 2015 Aug 1 [cited 2018 Aug 20]; 126: 97–107. Available from: https://www.sciencedirect.com/science/article/pii/S0144861715002131
  51. Da Silva L.C., Garcia T., Mori M., Sandri G., Bonferoni M.C., Finotelli P.V., Cinelli L.P., Caramella C., Cabral L.M. Preparation and characterization of polysaccharide-based nanoparticles with anticoagulant activity. Int J. Nanomedicine. 2012; 7: 2975–86.
  52. Chen M.C., Wong H.S., Lin K.J., Chen H.L., Wey S.P., Sonaje K., Lin Y.H., Chu C.Y., Sung H.W. The characteristics, biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral delivery of heparin. Biomaterials. 2009; 30 (34): 6629–37.
  53. Pinheiro A.C., Bourbon A.I., Cerqueira M.A., Maricato É., Nunes C., Coimbra M.A., Vicente A.A. Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydr Polym. 2015; 115: 1–9.
  54. Huang Y.-C., Kuo T.-H. O-carboxymethyl chitosan/fucoidan nanoparticles increase cellular curcumin uptake. Food Hydrocoll [Internet]. 2016 Feb 1 [cited 2018 Aug 22]; 53: 261–9. Available from: https://www.sciencedirect.com/science/article/pii/S0268005X15000673
  55. Cunha L., Rodrigues S., da Costa A.M.R., Faleiro M.L., Buttini F., Grenha A. Inhalable fucoidan microparticles combining two antitubercular drugs with potential application in pulmonary tuberculosis therapy. Polymers (Basel). 2018; 10 (6): 636-1-636–19.
  56. Park S., Hwang S., Lee J. pH-responsive hydrogels from moldable composite microparticles prepared by coaxial electro-spray drying. Chem Eng J [Internet]. 2011 May 1 [cited 2018 Aug 20]; 169 (1–3): 348–57. Available from: https://www.sciencedirect.com/science/article/pii/S1385894711002725
  57. Sezer A.D., Cevher E. Topical drug delivery using chitosan nano- and microparticles. Expert Opin Drug Deliv. 2012; 9 (9): 1129–46.
  58. Lee K.W., Jeong D., Na K. Doxorubicin loading fucoidan acetate nanoparticles for immune and chemotherapy in cancer treatment. Carbohydr Polym [Internet]. 2013 May 15 [cited 2018 Aug 22]; 94 (2): 850–6. Available from: https://www.sciencedirect.com/science/article/pii/S0144861713001574
  59. Bonnard T., Serfaty J.M., Journé C., Ho Tin Noe B., Arnaud D., Louedec L., Derkaoui S.M., Letourneur D., Chauvierre C., Le Visage C. Leukocyte mimetic polysaccharide microparticles tracked in vivo on activated endothelium and in abdominal aortic aneurysm. Acta Biomater [Internet]. 2014; 10 (8): 3535–45. Available from: http://dx.doi.org/10.1016/j.actbio.2014.04.015
  60. Suzuki M., Bachelet-Violette L., Rouzet F., Beilvert A., Autret G., Maire M., Menager C., Louedec L., Choqueux C., Saboural P., Haddad O., Chauvierre C., Chaubet F., Michel J.B., Serfaty J.M., Letourneur D. Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus. Nanomedicine. 2015; 14: 91–8.