RELEVANT ASPECTS OF THE ACTIVATION OF MAST CELLS MECHANISMS IN ISCHEMIC AND REPERFUSION INJURY

DOI: https://doi.org/10.29296/24999490-2019-06-03

T.A. Yagudin(1, 2), V.SH. Ishmetov(1), V.V. Plechev(1), V.N. Pavlov(1), Hong-Yu Liu(2) 1-Bashkir State Medical University, Lenin street, 3, Ufa, 450000, Russian Federation; 2-Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, China, 150081 E-mail: [email protected]

This article provides a modern analysis of the literature on the mechanisms of activation of mast cells (MC) because they are regulatory cells that make up an important part of the immune system and are part of the first line of defense against various pathological agents. The important role of MC in anaphylactic response and allergy was proved, but there was evidence that mast cells participate in a wider range of pathologies. Ischemic/reperfusion(I/R) injury triggers an inflammatory response and triggers a tissue damage/repair program known as immune control. The unique location of MC around the microcirculatory vessels makes them potentially the first link in response to early and specific I/R injury by releasing MC mediators. Multifunctionality and heterogeneity are the distinctive features of MC acquired as a result of different adaptations during phylogenesis. Thus, these important functions of MC, which may differ depending on the tissues in which they are located, and the various effects inherent in them during I/R are a topical issue today. This review provides a literature analysis on the role of MCs in I/R injury of myocardium, brain, kidneys, and internal organs or systems. The understanding of the mechanisms and the role of the MCs in I/R injury can help in the development of therapeutic strategies aimed at protection against specific damage
Keywords: 
ischemia/reperfusion, inflammatory response, mast cells, degranulation

Список литературы: 
  1. Castells M. Diagnosis and management of anaphylaxis in precision medicine. J. Allergy Clin. Immunol. 2017; 140: 321e33. https://doi.org/10.1016/j.jaci.2017.06.012
  2. Bulfone-Paus S., Nilsson G., Draber P., Blank U., LeviSchaffer F. Positive and negative signals in mast cell activation. Trends Immunol. 2017; 38: 657e67 . https://doi.org/10.1016/j.it.2017.01.008
  3. Ali H. Emerging roles for MAS-related G protein-coupled receptor-X2 in host defense peptide, opioid, and neuropeptide-mediated inflammatory reactions. Adv Immunol 2017; 136: 123e62. https://doi.org/10.1016/bs.ai.2017.06.002
  4. Finkelman F.D., Khodoun M.V., Strait R. Human IgEindependent systemic anaphylaxis. J. Allergy Clin. Immunol. 2016; 137: 1674e80. https://doi.org/10.1016/j.jaci.2016.02.015
  5. Reber L.L., Hernandez J.D., Galli S.J. The pathophysiology of anaphylaxis. J. Allergy Clin. Immunol. 2017; 140: 335e48. https://doi.org/10.1016/j.jaci.2017.06.003
  6. Gaudenzio N., Sibilano R., Marichal T. Different activation signals induce distinct mast cell degranulation strategies. J. Clin. Invest. 2016; 126: 3981e98. https://doi.org/10.1172/JCI85538.
  7. Uyttebroek A.P., Sabato V., Leysen J., Bridts C.H., De Clerck L.S., Ebo D.G. Flowcytometric diagnosis of atracurium-induced anaphylaxis. Allergy. 2014; 69: 1324e32. https://doi.org/10.1111/all.12468
  8. Karhausen J., Abraham S.N. How mast cells make decisions. J. Clin. Invest. 2016; 126: 3735e8. https://doi.org/10.1172/JCI90361
  9. Uyttebroek A.P., Sabato V., Bridts C.H., De Clerck L.S., Ebo D.G. Immunoglobulin E antibodies to atracurium: a new diagnostic tool? Clin. Exp. Allergy. 2015; 45: 485e7. https://doi.org/10.1111/cea.12448
  10. Gouel-Cheron A., de Chaisemartin L., Jonsson F., NicaiseRoland P., Granger V., Sabahov A. Low end-tidal CO2 as a real-time severity marker of intra-anaesthetic acute hypersensitivity reactions. Br. J. Anaesth. 2017; 119: 908e17 https://doi.org/10.1093/bja/aex260
  11. Lurie K.G., Nemergut E.C., Yannopoulos D., Sweeney M. The physiology of cardiopulmonary resuscitation. Anesth Analg. 2016; 122: 767e83 https://doi.org/10.1213/ANE.0000000000000926
  12. Schulkes K.J.G., Van den Elzen M.T., Hack E.C., Otten H.G., Bruijnzeel-Koomen C., Knulst A.C. Clinical similarities among bradykinin-mediated and mast cell-mediated subtypes of non-hereditary angioedema: a retrospective study. Clin. Transl. Allergy. 2015; 5: 5. https://doi.org/10.1186/s13601-015-0049-8
  13. Chen Y.C., Chang Y.C., Chang H.A. Differential Ca2+ mobilization and mast cell degranulation by FcεRI-and GPCR-mediated signaling [J]. Cell calcium. 2017; 67: 31–9. https://doi.org/10.1016/j.ceca.2017.08.002
  14. Peralta C.A., Jimenezcastro M.B., Graciasancho J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. [J]. J. of Hepatology. 2013; 59 (5): 1094–106. https://doi.org/10.1172/FCI856.
  15. Gersch C., Dewald O., Zoerlein M. Mast cells and macrophages in normal C57/BL/6 mice [J]. Histochemistry and Cell Biology. 2002; 118 (1): 41–9. https://doi.org/10.1177/YGYI8576.
  16. Vicencio J.M., Yellon D.M., Sivaraman V. Plasma exosomes protect the myocardium from ischemia-reperfusion injury [J]. J. of the American College of Cardiology. 2015; 65 (15): 1525–36. https://doi.org/10.1172/U855566.
  17. Ingason A.B., Mechmet F., Atacho D.A.M. Distribution of mast cells within the mouse heart and its dependency on Mitf [J]. Molecular immunology. 2019; 105: 9–15. https://doi.org/10.11111/JCI54476545.
  18. Caughey G.H. Mast cell proteases as pharmacological targets [J]. Eur. J. of pharmacology. 2016, 778: 44–55. https://doi.org/10.1038/s41598-017-11985-6
  19. Rothmeier A.S., Ruf W. Protease-activated receptor 2 signaling in inflammation [C] Seminars in immunopathology. Springer-Verlag. 2012; 34 (1): 133–49. https://doi.org/10.4103/0366-6999.241557
  20. Nelissen S., Lemmens E., Geurts N. The role of mast cells in neuroinflammation [J]. Acta Neuropathologica. 2013; 125 (5): 637–50. https://doi.org/10.1021/acsami.7b05669
  21. Frieri M., Kumar K., Boutin A. Role of mast cells in trauma and neuroinflammation in allergy immunology [J]. Annals of Allergy Asthma & Immunology. 2015; 115 (3): 172–7. https://doi.org/10.1061/aust.77880
  22. Biran V., Cochois V., Karroubi A. Stroke induces histamine accumulation and mast cell degranulation in the neonatal rat brain [J]. Brain Pathology. 2008; 18 (1): 1–9. https://doi.org/10.21470/1678-97412017-0099
  23. Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection [J]. Free Radical Biology and Medicine. 2018. https://doi.org/10.1016/j.freeradbiomed.2018.01.024
  24. Tejada T., Tan L., Torres R.A. IGF-1 degradation by mouse mast cell protease promotes cell death and adverse cardiac remodeling days after a myocardial infarction [J]. Proceedings of the National Academy of Sciences of the United States of America. 2016; 113 (25): 6949–54. https://doi.org/10.1073/pnas.1603127113
  25. Neumann F.J., Sousa-Uva M., Ahlsson A. 2018 ESC/EACTS guidelines on myocardial revascularization [J]. Kardiologia Polska (Polish Heart J.). 2018; 76 (12): 1585–664. https://doi.org/10.1093/eurheartj/ehy658
  26. Baines C.P. How and when do myocytes die during ischemia and reperfusion: the late phase. J. Cardiovasc Pharmacol Ther. 2011; 16 (3–4): 239–43. https://doi.org/10.1177/1074248411407769
  27. Marino A., Sakamoto T., Robador P.A. S1P receptor 1-Mediated Anti– Renin-Angiotensin System Cardioprotection: Pivotal Role of Mast Cell Aldehyde Dehydrogenase Type 2 [J]. J. of Pharmacology and Experimental Therapeutics. 2017; 362 (2): 230–42. https://doi.org/10.1124/jpet.117.241976
  28. Marino A., Levi R. Salvaging the Ischemic Heart: Gi-Coupled Receptors in Mast Cells Activate a PKCE/ALDH2 Pathway Providing Anti-RAS Cardioprotection [J]. Current medicinal chemistry. 2018; 25 (34): 4416–31. https://doi.org/10.2174/0929867325666180214115127
  29. Wong A.M., Hodges H., Horsburgh K. Neural stem cell grafts reduce the extent of neuronal damage in a mouse model of global ischaemia [J]. Brain research. 2005; 1063 (2): 140–50. https://doi.org/10.1016/j.brainres.2005.09.049
  30. Zhao H., Alam A., Soo A.P. Ischemia-Reperfusion Injury Reduces Long Term Renal Graft Survival: Mechanism and Beyond [J]. EBioMedicine. 2018; 28: 31–42. https://doi.org/10.1016/j.ebiom.2018.01.025
  31. Basile D.P., Donohoe D., Roethe K. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function [J]. American J. of Physiology-Renal Physiology. 2018. https://doi.org/10.1152/ajprenal.2001.281.5.f887
  32. Danelli L., Madjene L.C., Madera-Salcedo I. Early Phase Mast Cell Activation Determines the Chronic Outcome of Renal Ischemia–Reperfusion Injury [J]. The J. of Immunology. 2017; 198 (6): 2374–82. https://doi.org/10.4049/jimmunol.1601282
  33. Binek A., Fernández-Jiménez R., Jorge I., Camafeita E., López J.A., Bagwan N. Proteomic footprint of myocardial ischemia/reperfusion injury: Longitudinal study of the at-risk and remote regions in the pig model. Scientific Reports. 2017; 7 (1). №12343. https://doi.org/10.1038/s41598-017-11985-5
  34. He Y., Zhang B., Chen Y., Jin Q., Wu J., Yan F. Image-Guided Hydrogen Gas Delivery for Protection from Myocardial Ischemia-Reperfusion Injury via Microbubbles. ACS Applied Materials and Interfaces. 2017; 9 (25): 21190–9. https://doi.org/10.1021/acsami.7b05346
  35. Zheng X.-H., Liu C.-P., Hao Z.-G., Wang Y.-F., Li X.-L. Protective effect and mechanistic evaluation of linalool against acute myocardial ischemia and reperfusion injury in rats. RSC Advances. 2017; 7 (55): 34473–81. https://doi.org/10.1039/c7ra00743d
  36. Zhao X., Zhang F., Wang Y. Proteomic analysis reveals Xuesaitong injection attenuates myocardial ischemia/reperfusion injury by elevating pyruvate dehydrogenase-mediated aerobic metabolism. Molecular BioSystems. 2017; 13 (8): 1504–11. https://doi.org/10.1039/c7mb00140a
  37. Yang G.-Z., Xue F.-S., Liu Y.-Y., Li H.-X., Liu Q., Liao X. Feasibility Analysis of Oxygen-Glucose Deprivation-Nutrition Resumption on H9c2 Cells in vitro Models of Myocardial Ischemia-Reperfusion Injury. Chinese Medical J. 2018; 131: 2277–86. https://doi.org/10.4103/0366-6999.241809
  38. Wang S., Liu C., Gong C., Li T., Zhao J., Xiao W. Alpha linolenic acid intake alleviates myocardial ischemia/reperfusion injury via the P2X7R/NF-κB signalling pathway. J. of Functional Foods. 2018; 49: 1–11. https://doi.org/10.1016/j.jff.2018.08.012
  39. Zhang S.-B., Liu T.-J., Pu G.-H., Li B.-Y., Gao X.-Z., Han X.-L. Suppression of Long Non-Coding RNA LINC00652 Restores Sevoflurane-Induced Cardioprotection Against Myocardial Ischemia-Reperfusion Injury by Targeting GLP-1R Through the cAMP/PKA Pathway in Mice. Cellular Physiology and Biochemistry. 2018; 49: 1476–91. https://doi.org/10.1159/000493450
  40. Luo C., Yuan D., Zhao W. Sevoflurane ameliorates intestinal ischemia-reperfusion-induced lung injury by inhibiting the synergistic action between mast cell activation and oxidative stress [J]. Molecular medicine reports. 2015; 12 (1): 1082–90. https://doi.org/10.1038/s41598-017-11985-98
  41. Zhao W., Zhou S., Yao W. Propofol prevents lung injury after intestinal ischemia–reperfusion by inhibiting the interaction between mast cell activation and oxidative stress [J]. Life sciences. 2014; 108 (2): 80–7. https://doi.org/10.4103/0366-6999
  42. Tong F., Luo L., Liu D. Effect of intervention in mast cell function before reperfusion on renal ischemia-reperfusion injury in rats [J]. Kidney and Blood Pressure Research. 2016; 41 (3): 335–44. https://doi.org/10.1021/acsami.7b05390
  43. Baba A., Tachi M., Ejima Y. Less contribution of mast cells to the progression of renal fibrosis in Rat kidneys with chronic renal failure [J]. Nephrology. 2017; 22 (2): 159–67. https://doi.org/10.1093/eurheartj/ehy697
  44. Danelli L., Madjene L.C., Madera-Salcedo I. Early Phase Mast Cell Activation Determines the Chronic Outcome of Renal Ischemia–Reperfusion Injury [J]. The J. of Immunology. 2017; 198 (6): 2374–82. https://doi.org/10.1039/c7mb0776
  45. Horie Y., Ishii H. Liver dysfunction elicited by gut ischemia-reperfusion [J]. Pathophysiology. 2001; 8 (1): 11–20. https://doi.org/10.1016/s0928-4680(01)00063-3
  46. Pierro A., Eaton S. Intestinal ischemia reperfusion injury and multisystem organ failure [J]. Seminars in Pediatric Surgery. 2004; 13 (1): 11–7. https://doi.org/10.1053/j.sempedsurg.2003.09.003
  47. Yang, C.-F. Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Tzu Chi Medical J. 2018; 30 (4): 209–15. https://doi.org/10.4103/tcmj.tcmj_33_18
  48. Geldi O., Kubat E., Ünal C.S., Canbaz S. Acetaminophen mitigates myocardial injury induced by lower extremity ischemia-reperfusion in rat model. Brazilian J. of Cardiovascular Surgery. 2018; 33 (3): 258–64. https://doi.org/10.21470/1678-97412017
  49. Jeddi S., Ghasemi A., Asgari A., Nezami-Asl A. Role of inducible nitric oxide synthase in myocardial ischemia-reperfusion injury in sleep-deprived rats. Sleep and Breathing. 2018; 22 (2): 353–9. https://doi.org/10.1007/s11325-017-1573
  50. Dahlin J.S., Hallgren J. Mast cell progenitors: origin, development and migration to tissues [J]. Molecular immunology. 2015; 63 (1): 9–17. https://doi.org/10.1093/eurheartj/976