THE POSSIBILITIES OF ANOMALOUS VISCOSITY TIME DEPENDENCE METHOD FOR DETERMINATION OF CELL RADIOSENSITIVITY

DOI: https://doi.org/10.29296/24999490-2019-06-04

K.Yu. Ivanov, G.L. Patochka, I.A. Varganova, Ya.I. Medvedev, V.I. Nagiba, E.A. Nikanorova Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics, Mira pr., 37, Sarov, 607188, Russian Federation E-mail: [email protected]

Introduction. The initial state of an organism and its initial reactivity are the main prognostic criteria for the individual radiosensitivity evaluation. Particulars of the DNA structure and chromatin conformation determine in many respects the cell radiosensitivity. The method of the anomalous viscosity time dependence (AVTD) allows to research the chromatin conformational state, as well as to evaluate its reactivity based on the response to hyperthermia (heat shock). The DNA damage degree after irradiation under the test dose is a general criterion for the cell radiosensitivity evaluation. The goal of research. The work is aimed to analyse the radiation-induced DNA damage dependence on the initial chromatin conformational state and reactivity. Material and methods. The radiobiological studies were performed using the cells of white outbred male rats in vitro. Using the AVTD method, with respect to each animal, it was determined the initial chromatin conformational state and reactivity. After gamma radiation exposure of 60Со at the dose of 3,0 Gy it was determined the DNA damage degree using DNA-comet assay. Results. In a group of animals in general, the irradiation led to a considerable increase of the DNA damage degree relative to the spontaneous level (р≤0,001). It was found the meaningful positive correlative dependence (r=0,37; p≤0,05) of the individual radiation-induced DNA damage degree on the initial chromatin reactivity to heat shock.
Keywords: 
blood cells, chromatin, anomalous viscosity time dependence method, heat shock, DNA damage, comet assay, radiosensitivity

Список литературы: 
  1. Darenskaja N.G., Korotkevich A.O. Nespetsificheskaja reaktivnost' organizma i printsipy formirovanija individual'noj rezistentnosti. M.: Voentehnizdat, 2001; 236. [Darenskaya N.G., Korotkevich A.O. Nonspecific body reactivity and principles of forming of individual resistance. M.: Voentexinizdat, 2001; 236 (in Russian)]
  2. Ushakov I.B., Shtemberg A.S., Shafirkin A.V. Reaktivnost' i rezistentnost' organizma mlekopitajuschih. M.: Nauka, 2007; 493. [Ushakov I.B., Shtemberg A.S., Shafirkin A.V. Reactivity and body resistance in mammals. M.: Nauka, 2007; 493 (in Russian)]
  3. Shtemberg A.S., Ushakov I.B., Shtemberg O.I. Innovatsionnyj proekt «Problema otsenki i prognozirovanija individual'noj nespetsificheskoj rezistentnosti organizma». Mikroelekronika. 2008; 3: 72–4. [Shtemberg A.S., Ushakov I.B., Shtemberg O.I. Innovative project «The problem of determination and forecasting of individual nonspecific body resistance». Mikrojelekronika. 2008; 3: 72–4 (in Russian)]
  4. Alipov E.D., Tyrsina E.G., Sarimov R.M., Ruzov A.S., Prohorchuk E.B. Priobretennaja radiorezistentnost' potomkov obluchennyh kletok soprovozhdaetsja perestrojkami v organizatsii hromatina. Rad. biol. Radioekologija. 2004; 44(2): 188–97. [Alipov E.D., Tyrsina E.G., Sarimov R.M. Ruzov A.S., Prokhorchuk E.B. Acquired radioresistance of progeny of irradiated cells is accompanied by rearrangements in chromatin organization. Rad. Biol. Radioekologiya. 2004; 44 (2): 188–97 (in Russian)]
  5. Hajmovich T.I., Ivanov K.Ju., Patochka G.L., Lobkaeva E.P. Konformatsionnoe sostojanie hromatina i ego reaktivnost' na teplovoj shok kak pokazateli nespetsificheskoj reaktsii kletki na vneshnie vozdejstvija. Ekologicheskij vestnik. 2010; 3 (13): 69–78. [Khaimovitch T.I., Ivanov K.Yu., Patochka G.L., Lobkayeva E.P. Conformation state of chromatin and its reactivity to thermal shock as indication of cells non-specific reaction to exterior effects. Jekologicheskij vestnik. 2010; 3 (13): 69–78 (in Russian)]
  6. Ivanov K.Ju., Patochka G.L., Nikanorova E.A., Nagiba V.I. Individual'nye osobennosti izmenenija konformatsii hromatina pri dejstvii razlichnyh fizicheskih faktorov. Molekuljarnaja meditsina. 2019; 17 (5): 35-41. https://doi.org/10.29296/24999490-2019-05-05 [Ivanov K.Yu., Patochka G.L., Nikanorova E.A., Nagiba V.I. Individual peculiarities of chromatin conformational state modification under exposure to different physical factors. Molekulyarnaya meditsina. 2019; 17 (5): 35–41 (in Russian). https://doi.org/10.29296/24999490-2019-05-05]
  7. Popova, G.M., Druzhinin Ju.O., Stepanov V.N., Djatchina I.F., Snigireva G.P., Bogomazova A.N., Novikova E.I., Novitskaja N.N. Programmno-apparatnyj kompleks otsenki individual'noj radiochuvstvitel'nosti onkologicheskih bol'nyh po metodu «komet». Al'manah klinicheskoj meditsiny. 2008; 17 (1): 368–70. [Popova G.M., Druzhinin Yu.O., Stepanov V.N., Dyatchina I.F., Snigiryova G.P., Bogomazova A.N., Novikova E.I., Novitskaya N.N. The software-hardware complex for comet assay analysis in the estimation of individual radiosensitivity of cancer patients. Al’manah klinicheskoj mediciny. 2008; 17 (1): 368–70 (in Russian)]
  8. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013; 310 (20): 2191–4. https://doi.org/10.1001/jama.2013.281053.
  9. Directive 2010/63/EU of the European Parliament and the Council of 22 September 2010 on the protection of animals used for scientific purpose. Official J. 2010; 276: 33–79.
  10. Novikova I.A., Hoduleva S.A. Klinicheskaja i laboratornaja diagnostika. Minsk: Vysh. shk., 2013; 446. [Novikova I.A., Khoduleva S.A. Clinical and laboratory diagnostics. Minsk: Vysh. shk., 2013; 446 (in Russian)]
  11. Singh N.P., McCoy M.T., Tice R.R., Schneider E.L. A simple technique for quantification of low levels of DNA damage in individual cell. Exp. Cell Res. 1998; 175 (1): 184–91.
  12. Hoffman J.I.E. Biostatistics for Medical and Biomedical Practitioners. Kirjastaja: Elsevier Science Publishing Co Inc. 2019; 734.
  13. Suzuki K., Nakashima M., Yamashita S. Dynamics of ionizing radiation-induced DNA damage response in reconstituted three-dimensional human skin tissue. Radiat. Res. 2010; 174 (4): 415–23. https://doi.org/10.1667/RR2007.1
  14. Mariotti L.G., Pirovano G., Savage K.I., Ghita M., Ottolenghi A., Prise K.M., Schettino G. Use of the γ-H2AX Assay to Investigate DNA Repair Dynamics Following Multiple Radiation Exposures. PLoS One. 2013; 8 (11): e79541. https://doi.org/10.1371/journal.pone.0079541